RECORD

Book 9
W. Rall

Mathematical Research Branch
Nim
Belg. 31
$\operatorname{Rn} 9-A-17$

National Lusts, of Heal th.
Bethesda, Md.
20014

Home telephone WH-6-4455
Homeadhers 11420 Luxmanar Rd. Rahville, Wd. 20852

Book 9
Research of Computation D cary Continued from Book 8 on $6 / 27 / 66$

9 Stoer

$$
\begin{aligned}
& \text { सली की कर कात पत तो }
\end{aligned}
$$

Table
\qquad
(Gxicid) हlf. Releal ot 9み\% withachoo.

Up/slope for $t=5$ mine $\quad 185$ wnver $\quad 1.3$ muser .098 nuec

615.554	$.596 \times 10^{-3}$	$.3905 \times 10^{-2}$
peakt	.23	.68
poot topeck	.19	.58
	.95 usec	2.9 usec

$\mathrm{Np} /$ slare for $r=$ sure .56 musec
1.9 user
$615,554 B$

holfwoy down $T=$.78
hoefury ly	.095
holfurboth	.68
for $r=5$ mse	3.4 msec

$$
\begin{aligned}
& 1.525 \\
& .30- \\
& \hline 1.225+ \\
& 6.13 \text { mser }
\end{aligned}
$$

6/27/66
Going over computer on put received $6 / 24+6 / 27$
615.551 VFaVStrans. in git. (1) of ten

VFmems weryfort Ethaus $(\lambda=50$.) - thinwes complete VS "weyslow" " $(\lambda=5$.$) -didnat get helfung dom$
\therefore setup 615.552 to complete VS and get VVF with $\lambda=100$.
615.554 VFAVS in (4) of ten.

Need more time for both, put in for serum.
665.101 two different EPSP in Brauchlet; needed $\lambda 18,3$ card
664.115-664. 145Ω (1) of ten and in (16) alone
in at of there need more tine for (16)

Wast of there need more thine for (16)
Also, depol in (16) was about 0.25, which is really foo much.

- put in rerun's with E cut to $1 / 3 \neq$ longer time in (16)
Prepared chart for (1) for twine to peak, width at hal amply.
These figures are needed for plots to he richuded in joint paper with Bob Burke, Phil Nelson, etc., coltish me dis used A examined preliminary plot friday (6/24/66).

For \& thominat $F(T)=k T e^{1-k T}$
peakat $k T_{p}=1$ because then $F\left(T_{p}\right)=1 e^{1-1}=1$
holfwoyppp at $k T_{\text {hap }}=0.232$ because

$$
\begin{aligned}
& (0.23)\left(e^{.77}\right)=(.23)(2.16)=.497 \\
& (0.24)\left(e^{.76}\right)=(.24)(2.138)=.513
\end{aligned}
$$

hoefuragdom ot $k T_{\text {hd }} \simeq 2.68$ because

$$
\begin{aligned}
(2.68)\left(e^{1.68}\right) & =(2.68)(.1863 r) \\
& =.499
\end{aligned}
$$

$$
\therefore \frac{\text { holfurith }}{\text { tho to peat }}=\frac{2.68-.232}{1} \simeq 2.45
$$

for all fast or slow E of this general form.

$$
\begin{aligned}
\frac{d F}{d T} & =k e^{\widetilde{1-k T}+k T(-k) e^{1-k T}} \\
& =k(1-k T) e^{1-k T}
\end{aligned}
$$

for $k T 1 / 2$ up get $\frac{d F}{d k T}=\frac{1-k T}{k T} \times \frac{1}{2}$

$$
\begin{aligned}
& =\frac{.768}{.232}\left(\frac{1}{2}\right) \\
& =1.655
\end{aligned}
$$

which is close to the 1.6 found for the EPSP

6/22/60 Did referee job for Finale this afternoon $6 / 28 / 66$ Received Ditto cory of Molar thesis \& lett hon lecture $6 / 28 / 66$ Continue gov over owfrit. Near to fish Ne Ven 615.501 VF taus in all apis.

Rosemfor longer tine

$$
\text { peak } T=.114
$$

peat ample $=.048$
missed halfway down

$$
\begin{aligned}
10 \% \text { op, } T & =.010 \\
\text { foot } & =.005
\end{aligned}
$$

$$
\text { foot }=.005
$$

$$
\text { foot to perk }=0.110
$$

$$
\text { for } r=5 \text { may get } 0.55_{\text {mac }}
$$

slope $/ v_{p}=17.7$ dinousioulers

$$
\begin{aligned}
\text { for } \varepsilon=5 \text { use } & =3.54 \text { ne }-1 \\
v_{p} / \text { slope } & =0.283 \text { nsec }
\end{aligned}
$$

This fits pretty well on the
common up/slope cs this e to peak lime

$$
1 \rightarrow 4 \text { comes to } \Delta z=3(.4)=1.2
$$

615.042 Ein(4) with $Z_{m}=4.0$, Lot tans. $\tau / 25$
50% at. 26
which does agree gppoof coth Table I between
10% at. 135 opts. $6 \times 8^{\text {ie. }}$ (e) 77

$$
\Delta z=6 \times(.2)=1,2
$$

from foot trine to peak $=0.48$

$$
\begin{array}{r}
\text { for } r=5 \mathrm{mar} \simeq \\
2.4 \text { maser }
\end{array}
$$

 exhewhery

serene $28.80=$ sxpel 24 esi wo low plemy चfy cint $0, \dot{2}+2$

 $25=$
 नहान- 6 8el
 atr lox/anart $2+2+2+8)$ $2 \times 5+4)^{3}+25$

6/28/66
666.004 Electric Coupling comprewith p. 188 book 8 Here, tried maknig Ept. 6 much smaller than lofore and compensatorily sincreasing 20,6 , to see if V_{k} becanas more nearly proportion al to V_{A}.
got ting foctor touble, because of larger 7
Butfirst, compere whot got here with 666.003
peck ney Qin' 6 pell to aboi $1 / 3$, but neg V s opprop doubled.
V_{8} is same as lofore, $V_{10}=V_{k}$ seans ney all the way.
$\therefore V_{R}=V_{8}+V_{6}$ is poty resuced goon ng.
\therefore repect V_{5} abra redured. peak $P_{5}=-052$ mid diphenti.06 rotidaphenotic
Thus, this device of reducuig coupling capacity ond elimuiate The diphosic effect at 55, bu italso hal the unumpectedeffect of midenig V_{k} neg. Proamably this simply mears that V_{k} is at difphent point along potental dooder from V_{5} to V_{8}, but magle there is an esron in the setup. This must be reexamied.
666.204

Here, avoided Wlow up of 2028203 .
also sterdystate now seens O.K. - ingmists (5)
Q_{0} in smalles than V_{5}
Q1 pahs. 00164 at $T=.45$
Q5 . . 0562 . 030
$\not \& Q_{q}$ is pros. $\left.\} \begin{array}{l}\text { semms } \\ \text { is zero }\end{array}\right\}$ semew.
turnunegat $T E .18$
Q6 is neg foroll T, peahs at $T=.04$
Q_{T} (axom) perks at $T=.03$, peak $V_{T}=.82$
$\varepsilon_{\text {pechs at }} T=.02$
Summer 13 corrosp V_{6} pedels at beaneero $t=0.02$ at. 27

* But do not milestand why Φ_{5}-diphenr won (13) ionot ?esson in setup.
665.102

Sun

$$
\begin{aligned}
& \varepsilon=1, \text { in } 3,4,5 \\
& \varepsilon=2, \dot{\operatorname{s}} 3
\end{aligned}
$$

(1) pealr $V=.0245$ at $T=40$

(3)	.55	10
(4)	.61	.14
(5)	.70	.14

at $T=.35$
$3,4,5$ done gove
.01402

3 alone gove $\frac{.01576}{.02978}$
combinalgore .02422 81\% +
at $T=.50$
$3,4,5 \quad .01483$

3	$\frac{.01449}{.02932}$	$\frac{.01390}{.02865}$
combined	.02410	.02363
	82%	$82 \xi_{0}$

$\therefore 18 \% \operatorname{los} 2$
seperate $\varepsilon=1$ - in $2 \$ 3$
(4) toolenge eacher thetwor padk $V=.02856$ at $T=.25$
.2736
.01
.109
.22
.084

$$
.38
$$

$$
T=.45
$$

$$
.01478
$$

$$
\frac{.01505}{.02983}
$$

$$
.02444
$$

81\%

$T=.50$.60
.01475	.01459
.01390	.01333
.02865	.02792
.02363	.02308
$82 \xi_{0}$	882

.60
.01459
$\frac{.01333}{.02792}$
.02308 82\%

6/28/66 presh oupfut
615.554 VF\&VS E in (4) of ten, see pp $3 \gamma 4$.
for micopperation of ronetes.
615.552 VVF HVS exin (1) seepp $3 \not 44$
665.101 Branchlet E, Two EPSP
refer bode' to p. 186 of book 8 b
(11)

St.st. inpon nenationce

$$
\operatorname{at}(4) \text { is } 16 \times(.1338)
$$

$$
=2.14
$$

$$
\begin{aligned}
& \text { Zivst EPSP } \\
& \text { Moost }=1 \text { mi } 3,4,5
\end{aligned}
$$

Secand EPSP mefort $\varepsilon=2$ in (3)abone
comperep. 184
book 8

(1) pat $V=.01483$ at $T=.50$.01576 at $T=.35$			
(3)	.2986	.10	.40	.08
(4)	.5441	.12	.152	.20
(5)	.6722	.14	.115	.34

auplitudes motquites lengeas wouted, erwhumere .017 and .022 in (1)
peahtines not quite as dofferent es unoted -6 - 2
But good enaigh to ty for a sumuation $\&$ see what happens. Also, oftos T.C., try $\varepsilon=1$ in 2 \& 3 for astione
$664 \cdot 115^{B}, 125,135,145^{B}$ serums to avalyse There remelts now enterred inghact with \& reduced to $1 / 3$
*) preporad 615.556 क.558 VVF \& VF in (6) \%(8) pinimlate 6/28/66

$$
\text { (1) in } 22 V+7 N V=50,210
$$

(4) $\cos \cos 8$

(1) $484=3 \times 20$

$$
\begin{equation*}
78,=16 \times 240 x \tag{0}
\end{equation*}
$$

1.

48P5:
81
1+18.
cspot
(1) 84 \qquad
(2) (8) $\div+48$
$2-20$

 3.4 \qquad $+\frac{1}{2}+2$
 \qquad

 atoray ate ine en
$6 / 29 / 66$
prepared 615.999 fort thaws, in which E in lack compartment was set to that which alone would make EPSP peak $=0.01$. This may give a larger halfwidth time to peak than uniform in all compartments does.

$$
\begin{array}{rrl}
\text { Used } & \begin{array}{c}
\lambda_{1,12}
\end{array}=\lambda_{15,1}= & 0.26 \times Q_{14} \\
2,12 & 15,2 & 0.41 \\
3,12 & 15,3 & 0.61 \\
4,12 & 15,4 & 0.89 \\
5,12 & 15,5 & 1.3 \\
6,12 & 15,6 & 1.7 \\
7,12 & 15,7 & 2.15 \\
8,12 & 15,8 & 2.6 \\
9,12 & 15,9 & 2.8 \\
10,12 & 15,10 & 3.1 \\
0,12 & & -15.82 \times Q_{14}
\end{array}
$$

6/30/66 four 615,999 had too many data points: fixed \% 615.501 VF in all pts. - now complete p. 6 615.502 a setup VVF with $\lambda=100$.
665.103 modify branchlet GE to provide for serb.9.102 $\varepsilon=0.7$ in 283 of $\begin{gathered}\text { pros T.C. }\end{gathered}$ Thispleses $\varepsilon=1$. in $3,4,5$ bopot.C.
*The error was pinpointed by cluckury remelts for 5 pt chains a verify on that those points fall on same curves, except for the nicorrece (10) of ten point.

	VVFin (8)
pedkamp.	$.1014 \times 10^{-3}$
peaktine	$.65+$, say. 66
so\%	.265
10%	.14
foot	.11
foot topeake	.54
for $c=5$	2.7

$$
\begin{aligned}
& \text { VF min (8) } \\
& \begin{array}{l}
.2024 \times 10^{-3} \downarrow \\
.70-\text { sade } \\
.288 \\
.28-.66 \\
.155 \\
.124 \\
.576 \\
2.83 \quad 2.7 .8
\end{array}
\end{aligned}
$$

helfdom	1.67	1.705
hoof up	.27	.288
halfwblth	1.4	1.42
for $r=5$	7.0	7.1

6/30/66 seceivad lots of oripno, see provian page ar well. Alsofondenor in slow trons (16) of (10) Walfuridth

Nowlook at 615,556 B +558

$$
\text { VVF } \& V F
$$

$$
\text { prit in } 5 ד 0
$$

VVFin(6)

$$
\begin{aligned}
& 50 \% \\
& 10 \% \\
& \text { foot } \\
& \text { foot to peck } \\
& \text { for } \mathrm{c}=5
\end{aligned}
$$

$$
\begin{aligned}
& .40 \\
& .151
\end{aligned}
$$

$$
\begin{gathered}
\text { VFin (6) } 2 / 50 \\
.307 \times 10^{-3} \\
.40 \\
.171 \\
.092 \\
.07 \\
.33 \\
1.65 \\
1.29 \\
.17 \\
1.12 \\
5.6
\end{gathered}
$$

peak aupl.
peak tive
$.154 \times 10^{-3}$

$$
\begin{array}{ll}
\text { holfurgidown } & 1.3 \\
\text { hoofup } & .15 \\
\text { hoefwiodth } & 1.15 \\
\text { for } c=5 & 5.75
\end{array}
$$

$\left(\frac{d \pi}{d \pi}\right) / \sqrt{p}=5.18$
Pinm 615.801 two chaents of fine

$$
\begin{aligned}
& \text { onvith of } \varepsilon=0.1 \text { in (1) an (5) } \\
& \text { other with } \varepsilon=0.1 \mathrm{mi} \text { (6) and } \varepsilon=1.0 \text { ~ }
\end{aligned}
$$

615.802 surgle ept. supempoong two ε

$$
\begin{aligned}
& \text { New } \Omega=0.1 \text { with } \lambda=50 \text {, VF } \\
& \text { Barwill get } \\
& \varepsilon=0.2 \text { with } \lambda=50 \mathrm{VS} \\
& \text { T shovel hore been } 0.02
\end{aligned}
$$

ink line conesp to squere $\& ~ M$ of difperen' durations to all comportmants. Cleorly, squerquers is a positive desadiontage
geen line conshp to E - of dfpes durain to (1)
Ojai ABCD appoy thie to pede $=.25 \tau \longrightarrow 1.25$ msec holfousth $\approx 1.9 \tau \longrightarrow 9.5$

DCBA
foot to peak $\tau .75 \tau \simeq 3.75$ unec
halfurdth $\simeq .75 \tau \simeq 3.25$

71166
Takin stock of Theoretical plot: half with us time to peak, nichudiriz most recent additions. Need to decide whether proper needs two theoretical figures o also how les to assange the presentation.
A falls ito middle of range of data points
(1) anchors bottom end.
top end of data is well to left of slope 3 line.

* all of the Eshopes in (8), (10) and (5) of fore have helfurdtirs between $7+7.6$ and are too for to the right.
? How rel left? (1) add proximal input
abs, probably can push up, bio? troll left by shopniz ε as follows

The (A) points, for uniform in all cots, can account for only a small fraction (say 10%) of the data

To shift down, need proxpresing location, faster \sum com ut help,
withes sparoid suaptor,'
To shift up, reed periphthlocetion, slower Ecaumg help minou'special shoghing.
But, expect that $\sqrt{ }$ might pustan up and that
 mightprush dow on

Ko nith 3 mis

 wadkelon

 anowrel) arteltan lod 4 taris

\qquad skat mondtatact arat -1 1.0 malbat

$7 / 1 / 66$
For varied duration in peripheral pto, use spare to simplify. Also, ty shaping (tor outer half)
664.601 has squire $\varepsilon=2 \cdot$ in $6,7,8,9,10 \neq 16$

$$
\text { for } \Delta T=.05
$$

664.602 has $\frac{8.1]}{105 \cdot 5 \cdot 5}$ sure petialdist, but

Lu summary, the (A) pointy compared with data, prove that simple minors dist. cannot account for observed range. This puotrill forces the need for spatial localization, hut still must consider above shaped ε to see what it can do.
Believe that extremes of exp- range require est ames of localization range, but need shift to left which probably means some temporal shop ping.
Know for sure that ppatio-temporol shapnyy of the $A B C D$ type will give no re than enough shift.

Note that risceened temporal dispersion, wither special sheep ping, dree not help, infect it makes it curse.

$$
\begin{aligned}
& 615.556 \text { VS } \\
& \text { peek }=.90 \\
& \text { foot }=.165 \\
& \text { foot toped }=.735 \\
& \text { 故 }=5 \mathrm{mma} \text {, } 3.67 \\
& \text { hold dom }=1.92 \\
& \text { hogue } .416 \\
& \text { holfurdth }=1.504 \\
& \text { pr } \varepsilon=5, \quad 7.5
\end{aligned}
$$

665.103 had an extra dependence card 4 did not sum.
setup 615.503 VS all pts.
615.505 VVF \& VF in (5)
615.534 WV ain (4)
665.103 resubmitted
$7 / 1 / 66$
Got back four sums at 2:50
615.999 this cose hos niciepong weight of fast E meps.iphly

| pede ampl | .0712 | .05589 | .51 | .32 |
| :--- | :--- | :--- | :--- | :--- |\quad 1.08halfdomm 1.52

615.502 allopte VVF $\lambda=100$.
peade time . 065
foot $=.0025$
foot to sec $=.0625$
for $=5$, 312 mur
haffoum.77
hof up $\frac{.0156}{.754}$
for $\tau=5$, 3.77 mur
which fots on my upper limiting line for umporin to all cits.
615.510 VVF $+V E$ in 10

$$
\begin{aligned}
& \text { peck }=.80-.17 \text { foot } \\
& \text { foot topeak }=.63 \\
& \text { for }=5, \quad 3.15 \text { mee } \\
& \begin{aligned}
\text { holfowithe } & =1.81-.37 \\
& =1.44
\end{aligned}
\end{aligned}
$$

$$
\text { peoh }=.80-.186 \text { foot }
$$

$$
\text { foot topeak }=.614
$$

for $r=5,7.2$ uner

$$
\begin{array}{r}
\text { hoofwodth } 1.83-.388 \\
=1.442
\end{array}
$$

for $r=5,7.2$ urer
664.601 See p. 18 Square $\varepsilon=2$ in $6,7,8,9,10$ \& 16 foes $\Delta T=.05$
in (1)

$$
\begin{gathered}
\text { peck }=.0186 \text { at } T=.63 \\
50 \% 0 \text { at } T=.228 \\
10 \% \text { } \simeq .11 \\
\text { foot } \simeq .08 \\
\text { foo topede } \\
\text { for } c=5 \text { mirec, get }
\end{gathered}
$$

$$
\mathrm{Cm}_{\mathrm{m}}=5 \quad 7.035
$$

$$
\begin{gather*}
.0929 \quad .05 \tag{b}\\
50 \% \quad .024 \\
10 \% \approx .005 \\
\text { foo }
\end{gather*}=0 .
$$

hoofdomn .744 hof up $\frac{.024}{.72}$ for $\tau=5$ mare 3.6 ure.

$\tau_{m}=5 \quad$ T.Or skift sloght
in (16)

.0874 of $T=$	-15
50 ro at	.047
10% at .009	
foot	0
for topeak $=.15$	
for chesure,	.75 uner

for $\varepsilon=5 \mathrm{men}$, ot 3.97
$7 / 5 / 66$ gotbock
615.801 sup. 14 VF $\varepsilon=0.1$ in 07 (5); $\varepsilon=0.1$ ini(b) $y=1.0$ i(10) Here set double peale

$$
\begin{aligned}
& \text { pute }=.3577 \times 10^{-2} \text { at } .08 \\
& 50 \% \approx .025 \\
& 10 \% \simeq .0075 \\
& \text { foot } \simeq .003 \\
& \text { foot topeok } \approx .077 \\
& \text { forc }=5 \text { mece get } .385 \text { usec }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { halforn } & .32 \\
\text { holf up } & .025 \\
\text { holfuodth } & .295
\end{array}
$$

$$
\text { for }=5 \text { msecget } 1.47 \text { usec }
$$

conpenel with, 285-.915
for (1)alone
ie. This is up 4 merly on the hins.

Setrap
$.359 \times 10^{-2}$ at .08 , and. 408×10^{-2} at 0.7

$$
50 \% \text { at } 1.72
$$

615.802 suiglegt. with two twic comse

$$
\text { peak }=.065 \text { at } T=.65
$$

50%

$$
.211
$$

$$
.048
$$

$$
.007
$$

poot topeck $\simeq .643$
for $\varepsilon=5 \mathrm{~mm}$, get 3.21 mrec

Which is pooser thon simple VF as expected becouse of essor $\frac{14}{\text { seep. } 14}$
615.803 , lihe 801, but wincose Eto 0.2 ~in (5) of shipt from(b) (9) with $\varepsilon=-2$ 615.804, like 802, bis reduce slow amplitande hy pactars/ten, as onizmillymitrad.
665.103 Grouchlat summation seepp 9-12
mpirsesistance at (3) is $11248=$ cf.p. 184 book8

$$
\begin{aligned}
& x 8=1.0 \\
& \operatorname{tat}+40
\end{aligned}
$$

Which is ouly half That at (4) ar (9)
and $1 / 3$ That at 13
$1 / 4$

pede in (1) is. 03157 at $T=.30$
from 665.101 get $3,4,5$ deme, here have $2 \$ 3$ alone of

at $T=.25$	$T=.30$	$T=.35$
$3,4,5$ alone	.011543	.013081

Lu othewords. This goves 8% loss ly nonlinveen sum aitinn while 665.102 gave 18% loses 3 gave. 40 in (3) at 1.0

7/5/66 alro got bode
615.505 VVF $\& V F$

fos topeok $\approx .255$
on $と=5$ uner, 1.27 mec

Satup 615.998 with(8)@(9) loppdolf.

$$
615.804
$$

appoof $3 x$ at lange hafuridther
Gis coned ty for less VS to get leftiwas.s. satup 615.806 wita VS amplitate halud.
setup 615.80 with comburataon of .803 setup 665.104 same es 103 ba with temproal detail

$$
\begin{aligned}
& \text { pealr }=.953 \times 10^{-2} \text { at } T=.54 \\
& 50 \% \\
& .064 \\
& .6492 \text { of } T=.44 \\
& .04 \\
& .011 \\
& 10 \% \\
& .014 \\
& .004 \\
& .436 \\
& \text { foot to peok } \simeq .54 \\
& \tau_{m}=5 \text { mace, get } 2.7 \text { msec }
\end{aligned}
$$

$7 / 6 / 66$
An sercher of holforith /twir topede >3
Jook at Branchlet 665.103
Pough becouse of luge timestope.
timeto peak7*.30, $=305$

$$
\text { for } \tau_{m}=5 \text {, get } 5.9 \text { usec. }
$$

shouel redo with finer thuestops

$$
\begin{aligned}
& 2+3 \\
& \text { fine topeds } \simeq .25 \\
& \longrightarrow 1.25 \text { mser } \\
& \text { hof dom } \simeq .85 \\
& \text { hof up } \simeq .10 \\
& \text { holfwrath } \simeq .75 \\
& 3.25 \text { musec. }
\end{aligned}
$$

Wothock 615.803

$$
\begin{aligned}
& \varepsilon=12010 \\
& \varepsilon=.2 \sim(5)
\end{aligned} \| \varepsilon=.2 \text { in } 7
$$

$$
\text { peth } 2.36 \mathrm{k} \times 10^{-2} \text { at } T=.08
$$

$$
.366 \times 10^{-2} \text { of } \overline{\overline{2}} .33
$$

$$
\begin{array}{cc}
50 \% & .026 \\
10 \% & .008- \\
\text { foot } & .003
\end{array}
$$

$$
50 \% \cdot 08
$$

$$
10 \% \quad .032
$$

$$
\text { foot } 02
$$

$$
\text { fortoprod }=31
$$

$$
\text { for } \mathrm{cm}=5 \text {, go } 1.55 \text { usec }
$$

holfown 1.26
hoefing 88
halfudth 1.18
for cma $=5$ get 5.9 nusec nomby 4 times
615.806 ह.t. See p. 25

Try to shift Fowand 1.5 by 8 try rote coustants 100. inploce of provors $50 . \& 5$.
$7 / 8 / 66$ pain for shepts.
$615.815^{\text {b }}$ cornectruc enor in 805

$$
\text { Vpast } \varepsilon=1 \text { is (1) \&(2) }
$$

clanged inthay to slow $\varepsilon=.1$ mi (6) thma (10)
$V F \quad \varepsilon=1$ in (b) alove
615.807 sugle pt. VVF 100. $\varepsilon=.1$ VVUS $2.5 \quad \varepsilon=.01$
$\begin{aligned} 615.997 \text { slow } \varepsilon & =.01 \text { in all tengts } \\ \text { Vfost } \varepsilon & =.1 \text { in (1) }\end{aligned}$

$$
\text { Vost } \varepsilon=.1 \text { ~n (1) }
$$

$7 / 7 / 66$
Sotbock 664.601 t 602 for longntin-s
see $p .21$ for pencil eutries
 shaping when ingui is only toperiptend hoff
Sotbote 615.998 witu 8,9910 lopped off of $615,999(p .20)$
enter nerv values also on proge 20
Comeon lotween $5 \% 6$.
No gain (roiffoct roown) than simple minform.
But at leost not much worse thons or 6
error 10,15
$7 / 8 / 66 \quad 615.805$ twochanis of (5)

$$
\begin{aligned}
& \varepsilon=-1 \text { in } 1\left(\begin{array}{l}
(2) \\
\varepsilon=.2 \text { in }(5)
\end{array}\right. \\
& \text { peok } \because 45 \times 10^{2}=2+1=0.10 \\
& 50 \% .029 \\
& 10 \% 0.004 \\
& \text { foot }=0
\end{aligned}
$$

fort thach $=.5$ mase
hoffdomn .62
hoefup .029
holpurder . 591

$$
\text { heeffioth } 2.95 \mathrm{mar}
$$

$$
\begin{aligned}
& \text { seep.31 } \\
& \text { for } 615.815
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon=.1 \text { in (} 6 \\
\varepsilon=.2 \text { in }(9) \\
\varepsilon=.4 \text { in (9) } \\
\text { peah }=.585 \times 10^{-2} \text { a } T=.14 \\
50 \% \text {.035 } \\
10 \% \text {.01 } \\
\text { foor }=.005 \\
\text { foottopeds }=.135 \\
\text { fer } \varepsilon=5 \text {, set } .675 \text { wer } \\
\text { hoffomm. } 954 \\
\text { hoffup } .035 \\
\text { haefurdith } .919 \\
\text { or } 4.595 \text { msec }
\end{gathered}
$$

Many contemporary PD Eq. Nroblerns can be done better lory find the functional Whose derichatine yields thee P PE. This con often lee done most easily lu going bock to the oriznidel Physical problem, and the derivation of Are PDE.

There is a stoncland type of final for Laplaces equation of variations There of.
Wy le worthwhile to consider what finctionals of whet minimization is relevant to the chervers system. ?minimize essor or cross tole ? maximize resolution, information ? maximize stability, homeostasis.

Talk was verystimulating hecouse well organized, with emphasis fou overall motivation of results.

Togas This bund of stimulation, one needs either to give or produce a cestam amorist of such well focused organization of ruaterial. Jut as in a good lecture, also good research avoids too much muddling with side issues of tryst t cut through to the essentials.

Relevant to Sabbatical. Might he well to go to a good applied no th. research center, such as that ore or go somewhere where a good applied nothemoticion warts to work on a common problems.
$7 / 8 / 66$
thterestingtalkhy Gose's prind Prof. Donald Greenspan of Unv.Wise. Wath.Res.Cuter
Lrypoved-ponerful munerical wethat for solung for both hineor of non-linear coses.
Wethod leans on A. Functionals of clomicl calcuhso of variations
B. Conversion to algebraic problem
C. Solution In Geveralized Nowton's mathod. Was a heankifally presented talk.
from $y(a)$ to $y(b)$
exaple of functenal: suppose we wish to fuid $y(x)$, suale that some intergal (franctional) has a minisum volue.

e.g. $F=\int_{a}^{b} f\left(x, y, y^{\prime}\right) d x$
classical method was to differentiate this to get a pastial defferential equation known as Eulor's equation. Clorsicalmethod had a little more suceers with the PDE, than with disect work with the functioncel.
However, todoy, botten to discatise the functronal, and them noceed to solve the algebair problem of solenny for all partials set to zero; use geveralized Noutton's method for this solution, which conoerges well Suconsive $x_{j}=x_{i}+w\left(f / f_{i}^{\prime}\right)$ where $i f \omega=1$, this is clamial Noutton Bit generaliged seaks wbetween $0 \not 2(0.5+1.9)$ which con infrrove convergence.

$$
\begin{aligned}
& 615.815 \\
& \lambda=50, \varepsilon=.1 \mathrm{~m}(1),(2) \text { \& } .2 \mathrm{~m}(5) \\
& \text { peah }=.465 \times 10^{-2} \text { of } T=.10 \\
& 50 \% \simeq .03 \\
& 10 \% \simeq .01 \\
& \text { foot } \simeq .004 \\
& \text { foo to peck } \simeq .096 \\
& \text { or } .48 \text { moce } \\
& \text { holfdom }=.626 \\
& \text { hefup }=.03 \\
& \text { hofprith } \approx .596 \\
& \text { or } 2.98 \text { muse }
\end{aligned}
$$

very similtar to 615.805 which had foulty setup
claze $\lambda \operatorname{ta} 25$
do only $1+5$
firt all single speed

$$
\begin{aligned}
& 815 B \\
& \lambda=50, \varepsilon=0 / \dot{m}(6), \\
& \lambda=10, \varepsilon=.1 \text { in } 6,7,8,9,10 \\
& \text { peah }=.2083 \times 10^{-1} .4 T=.38 \\
& 50 \% \simeq 1 \\
& 1090 \simeq .021 \\
& \text { foot } \simeq 0 \\
& \text { too topeal }=.38 \\
& \text { or } 1.9 \text { mec }
\end{aligned}
$$

$$
\begin{aligned}
& \text { holf dom }=1.194 \\
& \text { hofup } \frac{.1}{1.094} \\
& \text { hofpoodr } 5.47 \text { mer } \\
& \text { or } 5.47
\end{aligned}
$$

This has sig loutage thie to peak than does
charge blaw λ to 5. change $\varepsilon=.2$ mi(6) delete slow ε in $6,7,8$

$$
\min =\frac{1}{7 / 12 / 66}
$$

T/4/66 Wrote taxt companiy 7 301,283 of joint popes. disconred troublesome musplot of VF (1), Foot to had bemplottes wrong. peok

Put in 615.553 to ge VF in (3) 615.505 B to get FoS in (5) to sount on figure.
Did not yet get back thosepnom on $7 / \% / 66$ (seep. 27)
Had $51 / 3$ poges of typer taxt zeroyed.
74/12/66 Got bods 615.807, 615.815, (615.997 \tomany λ
(10) 15.807 suigle ept, with VVF $(\lambda=100.) \varepsilon=.1$ $\operatorname{VVVS}(\lambda=2.5) \varepsilon=.01$

$$
\begin{aligned}
& \text { peah }=.5916 \times 10^{-2} \text { at } T=.96 \\
& 10 \% \approx .15 \\
& 10 \% \approx .008 \\
& \text { foot } \approx 0 \\
& \text { foot topeak }=.96 \\
& \text { conesto } 4.8 \text { uner }
\end{aligned}
$$

holfwidth not fount
This case was to esteme.

$$
\begin{aligned}
& \text { Try past } \lambda=80 \text {. and } \varepsilon=.1 \\
& \text { slow } \lambda=3.5 \text { and } \varepsilon=.0025
\end{aligned} 615.808
$$

$7 / 1366$
with fest dashed lie of stinplerence
Then Fo. 2 AB will be the experimental points. ant Tog. 3AB will he further theoretical pouts

specially obtained points.

Fir. 3 A will explore effects of thine course temporal dispersion only.
Fog. 3 B will explore special combinations of pot sew tine conses or special combinations of locations.
$7 / 12 / 66$
At the ones todoydon't fit well, A showed toy fitting procedure to get holfup, peak, helforn

Mable, 11997 is forily core, che pull oui s slow 2 add for 2 F han. let factor of (1) \&(2) adjoint, with the rest fixed.
Reamed $1 / / 3 / 66$
Spew afternoon talknigwoth Phil B Bob re. Pits typescript of section IV \& mine of section III. We noted several places to tim IV. They wow III expanded. Then we concurtiated on figures. Decided that 7ig.1 should be somethniy like.

And that deseriptine introduction he provided with The single series (orizuial fast series), and the one straight reference line. Attempt toguidereader by
suplot

7/13/66 Sotbock fine oupruts

$$
615.505 \text { fort } 25 \text { slow mipiot to (5) }
$$

$$
\text { pech }=.818 \times 10^{x-3} \approx T=.3660 .37
$$

$$
\begin{aligned}
& \text { foot to seds } x \cdot 29 \text { t. } 30 \\
& 1.45 \text { usectog } 1.5
\end{aligned}
$$

$$
\begin{aligned}
& .1706 \times 10^{-2} \simeq .23 \simeq \\
& 50 \% .239 \\
& 10 \% .124 \\
& \text { foot . } 095 \\
& \text { foot to peatz } \simeq .43 \\
& 2.15 \text { usec }
\end{aligned}
$$

$$
\begin{gathered}
\text { hoofdom } 1.085 \\
\text { hoppp } \quad .166 \\
\text { hofluadth } .918 \\
4.59 \text { mser }
\end{gathered}
$$

$$
\begin{array}{r}
\text { hogdoom } \sim 1.288 \\
\text { hofpeint } \frac{.239}{1.049} \\
\text { hoffide } \\
5.24 \mathrm{misec}^{2}
\end{array}
$$

setup 615.552 pVF in (2)

$$
\begin{aligned}
& 615.553 \operatorname{VF}(500) \text { mipul to (3) } \\
& \begin{array}{c}
\text { peak }=.8917 \text { at } T=.162 \\
50 \% T=.0657
\end{array} \\
& 50 \% T=.0657 \\
& 10 \% \quad .0314 \\
& \begin{array}{c}
\text { foot }=023 \\
\text { foot topeck }=14 \\
\text { or } 7 \text { msec }
\end{array} \\
& \text { holform }=. .565 \\
& \text { hofup } .066 \\
& \frac{.02 \frac{2.495 \text { noer }}{2.5}}{}
\end{aligned}
$$

$7 / 13 / 66$ Cessers the computations on previons page. 615.808 surglecph. wos tor exteme .45 by 7.08 muse pot $\lambda=80 . e .1$, seno $\lambda=3.5$ at.0025 ebsonothe flot topped Really need peak a little later and taller Howerer 615.806 was too untd 2.18 ly 7.08 mss

$$
\begin{aligned}
& \text { for } \lambda=50, e .1 \text {, sow } \lambda=3.5 \text { at } .01 \\
& \begin{array}{ccc}
\text { Lait } T=\text { tre } & \text { s06 } & 808 \\
\text { fort } & .004 & 0
\end{array} \\
& \begin{array}{r}
\text { i.e. ty sething } v=0, .020, .05, .08, .09, .10, .08, .05 \\
\text { at } T=0, .010, .05, .10 .20, .30,1.0,1.5
\end{array}
\end{aligned}
$$

une inctial estinates fort for $\lambda=50$.) $\varepsilon=.15$
setup $6 / 5.809$ (forslow $\lambda=\frac{0^{5}}{5}$) $\varepsilon=005$
615.822 make ist fire use showtrans in $1 \neq 5$ mode 2 ul fire une fost in (2), t slowinif 4,5
615,552 notel previn's page
615.996 FIT EPSP Shope
\rightarrow VF in (3)
odunt an λ
Stowin $6,7,8,5,10$
\& Koppal
615.951 fit KapaO\& \& E 3
to old to ε in (6)tum (10)

$$
\text { mictiols } 01
$$

nirtially

$$
\begin{gathered}
\text { ped }=.4456 \times 10^{-2} \text { for } T=.16 \\
50 \% \quad .066 \\
10 \% \quad .031 \\
\text { foot } .022 \\
\text { foo topeak }=.138 \\
\text { fr } 2=5, .69 \mathrm{~min} \\
\\
\text { hofdom } \approx .718 \\
\text { hof wp } \simeq .066 \\
\text { hofwoh } \\
\text { for } z=5.652
\end{gathered}
$$

$$
\begin{aligned}
& \text { finally } k=100 . \quad 70,19=.117 \\
& \text { peak }=.1066 \text { at } F .17 \\
& 50 \% \text { at } .064 \\
& 10 \% \text { a . } 031 \\
& .023 \\
& \text { foo toped }=01147 \\
& \sin r=5, \text { get: } 735 \\
& \text { hoefdom }=1.51 \\
& \frac{\text { Thoclyp } \frac{.064}{\text { halfure } 1.446}}{\text { 1.4 }} \\
& \operatorname{for}^{2} z=5 \text {, get } 7.23
\end{aligned}
$$

apparenthy the VF timpur has too for.
Try fort $(\lambda=250)$ or conld slynt to a

7/155/66 Sot bode four conjutations
615.552 VF in (2)

$$
\text { peak }=.14335 \times 10^{-2} a_{0} T=.106 \text { to105 }
$$

$$
50 \% .041
$$

$$
10 \% .0175
$$

foot $\approx .012$
615.809
suople opt. fit
rued to cossed conderror
foo topedr $\approx .094$ to. 093
hoofdomn $=.37$
holfm $\simeq .041$

$$
\begin{aligned}
& \text { holpyp } \\
& =.041 \\
& \text { hoppody } \\
& \simeq .33
\end{aligned}
$$

resgras 1.65 mic
615.822
\checkmark slow han in (1) + 5

$$
\begin{aligned}
& \text { peah }=.160 \times 10^{-1} \text { at }=.57 \\
& 50 q_{0} .174 \\
& 10 \omega_{0} .057 \\
& \text { fot } .018 \\
& \text { foo to peok } \simeq .55 \\
& \text { for } z=5, \text { ot } 2.75
\end{aligned}
$$

fr $と=5$, gt 2.75
holform 1.686
hof up .174
hoof width 1.512
for $=5$, get 7.56
to panto ne night

Pos smin(9) Klowni(9)(0)
suplot
rel. amplitandes
woming. wong.

Putin6 615.952 danid
615953 chavio
615.809 sumpeyt
oll fit
seponte Koppa mop is have been latter
615.809 suglecpto
Lutially

$$
\begin{aligned}
& .7445 \times 10^{-2} \cdot 9 \cdot 13 \\
& 50 \xi_{0} \cdot 031
\end{aligned}
$$

$$
\begin{array}{ll}
1070.011 \\
\text { foo topeck }=.006 \\
\text { foo top } & .124
\end{array} \frac{183.01}{\text { foot. } 0006}
$$

$$
\begin{aligned}
& \text { hoeflog } 1.366 \\
& \text { hoflup } 1.031 \\
& \text { hoftwith } 1.335 \\
& 6.675
\end{aligned}
$$

med fost to be relismaller than here here 30 to 50 thies in .806 wasouly 10 thing, not enang sumper need about 20 tines
callthi $810 \rightarrow$ The 809 remminuth Koppa may gone This, lecame hod 70,9 set to .ol Coultery 811 set this wory fry ta dinint timmext worth

$$
\begin{aligned}
& \lambda_{07} \text { miviolly }+15.5 \text { fot } 50 \\
& \lambda 09 \text { u } .005 .01056003 .5 \\
& .2478 \quad .125 \\
& .2478 \text {. } 0 \% .125 \\
& \text { foo to porh } .120 \\
& \begin{array}{l}
\text { hoplom } 1.16 \\
\text { Woffup } .03 \text { is } \\
\text { woberd } 1.1285
\end{array} \\
& 5.642
\end{aligned}
$$

Moy need anst her variation with shaw mithod of VS
Go bork 615.953 fit Kappa (1)

$$
\text { pach }=.2424 \times 10^{-2} \text { of } T=.29
$$

$$
50 \% \cdot 111
$$

$$
10 \% .051
$$

$$
\text { foot } 0036
$$

$$
\text { fobt toperte. } 254
$$

$$
1.27 \text { usec }
$$

$$
\begin{aligned}
& \text { holfoom }=.8 .023 \\
& \text { hel }=.111
\end{aligned}
$$

$$
\begin{aligned}
& \text { helyp }=.111 \\
& \text { hofuidth } .912
\end{aligned}
$$

$$
4.5 \dot{6} \text { mse }
$$

neer miform hine
setup 954 with slow $-\varepsilon=.01$ in $(8),(9)+(10)$
友 slow $\varepsilon=$ afiutatle in (5)
fost $\varepsilon=11$ in mitielly. 01

$$
\begin{aligned}
& \text { तlo,19 or } \varepsilon \text { mi (3) fost } 25 \text { intialy } \\
& \text { To, roofer } \varepsilon=(5) \text { "1 } \quad \varepsilon=-1 \\
& \begin{array}{r}
\text { with } \varepsilon=.01 \text { in } 6,8,10 \lambda=10 \text {. } \\
\text { kryna }=.1324
\end{array} \\
& \text { B ofte fit } \begin{array}{c}
0,19 \\
\lambda_{0,2}=.0416 \\
\lambda_{0}=.016
\end{array} \\
& \lambda_{1020}=.01 \quad .285 \\
& \text { hoplow } \approx \frac{1.35 \text { est }}{.103} \\
& \begin{array}{lr}
\text { hofiger } & .103 \\
\text { hofulth } & 1.247 \\
6.235 \text { ner }
\end{array} \\
& 6.235 \text { nuser } \\
& \text { usepelpaint }
\end{aligned}
$$

$$
\begin{aligned}
& 7 / 18 / 66
\end{aligned}
$$

$$
\begin{aligned}
& \text { (B, foot } \varepsilon=.5 \text { m (2)) V(s. } \varepsilon=.1 \mathrm{~m}(9)+\text { (10) }
\end{aligned}
$$

Seecolvo p. 50
Sunnorge Uniform Sasies.

Sunmorize Single impor tine course Series, several location 615.999 fait $(\lambda=25$.) werghited for equal epsp componente $2.47 \times 7 \#$ $615.803 A, B$, 804 A, B werensful lus containet esson; naw have $815 A 4824$

$$
\begin{array}{cccccc}
615.824 \mathrm{~A} & \lambda=50 . & \varepsilon=.1 \mathrm{~m}(1) & \varepsilon=.2 \min (5) & .38 \times 1.8 & * \\
615.824 \mathrm{~B} & 11 & & \varepsilon=. \min (2), & 11 & 1.49 \times 6.88 \quad * \\
615.815 \mathrm{~A} & 11 & .1 \min (1) & .1 \mathrm{kn}(2), & .2 \mathrm{~min}(5) & .48 \times 2.98
\end{array}
$$

7/19/66 Prepored summary of these shiftd EPSP shepes. Seepp434-50 Discurset this of (rmoon with Bob Burke, to dowide w tweh onesto rídude in 7g.3-B \& discussion of poper.

* Poin number (1), Noneel to shift to longer haefuridths, becaure These con be attributed to ccm
(2) Cegree that theremay be somevery suall priphewlly geverated EPSP that follou Theortical cume bo are experimentatly lost in noise.
(3) Bob prefers to sostivet to moderate rate constouts. in. $\lambda=50,+\lambda=25$; leave ort $\lambda=5$. ar slomer.
(4) For $\lambda=50 \cdot+\lambda=25$.

$$
\begin{aligned}
& \text { Try somearhat similer to } 615.803 \mathrm{AB}+821 \mathrm{~A} \text {. } \\
& \varepsilon=.1 \text { mi(1) with } \varepsilon=.2 \text { in(5) or. } 1 \mathrm{~m}(\mathrm{H} \text { 社 } \\
& \varepsilon=1 \text { min(2) with } \varepsilon=.2 \text { in (5) } \\
& \varepsilon=.1 \text { ni (2) woth } \varepsilon=.2 \text { mi (4) }
\end{aligned}
$$

Suitabll for sumple presentation as a series.
Cabreadyhone $815 \mathrm{~A} \quad \varepsilon=1 \mathrm{~m}(1)+(2)+.2 \mathrm{~m}(5)$ \therefore need frist two abone
615.824
b150811 charges slowiffor 305 t5 5 \& miitial ratio to 20°
615.955

$$
\begin{aligned}
& \lambda=25 . \quad \text { aljintelanboth (1) \& (3) } \\
& \lambda=10 \text {. } 9 \times 10
\end{aligned}
$$

$615.824 \quad v=\lambda=50$. hoveploto

$$
\varepsilon=.1 \mathrm{~min} \text { (1) }
$$

$$
\varepsilon=.2 \text { in (5) }
$$

$$
\begin{array}{cl}
\text { peal2 }=.37 \times 10^{-2} \text { a } T=.08 \\
50 \% & .026 \\
10 \% & .008 \\
\text { for } & .0035
\end{array}
$$

foo topeds 2.077 our

- 38 + muse

$$
\begin{aligned}
& \text { holddom }=.385 \\
& \text { hofryp } \frac{.026}{\text { holfhadl } .359}
\end{aligned}
$$

1.795 mese

Corfirms. 803

$$
\begin{aligned}
& \varepsilon=.1 \\
& \varepsilon=.2
\end{aligned}
$$

$$
.154 \times 10^{-2} \text { at } T=.315
$$

$$
50 \% .073
$$

$$
10 \% \quad .029
$$

$$
\text { foot } \cdot 018
$$

foo topreds $=.297$
1.485 musec

$$
\begin{aligned}
& \text { holflom }=1.45 \\
& \text { hoffr }=.073 \\
& \text { hoffwh } 1.377 \\
& 6.885 \text { usec }
\end{aligned}
$$

good, bette Thom
Thesefit togther with 815 A) to mohea gool series, as anticipatet.

Neodto
Setup $615.825 A+B$ with $\quad \lambda=25$.

$$
\text { and } \begin{aligned}
\varepsilon & =1 \text { and (1) } \\
\varepsilon & =.1 \text { an (2) } \\
\varepsilon & =.2 \text { in }(5)
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon=1 \\
& \varepsilon=12 \operatorname{man}(6)
\end{aligned}
$$

7/20/66 Sotbock four oiphts
mothiy in (5) some as bfore in 8,9,10

$$
\begin{aligned}
& 615.954 \text { sloin } \varepsilon=.01 \text { in (8), (9) (10) } \\
& \text { show } \varepsilon=\text { aguiroble in (5) Tinidy } 05 \\
& \text { fivally } \\
& \text { fost } \varepsilon=11 \\
& \text { Anitially } \\
& \text { park }=.10205 \text { at } T=.28 \\
& 50 \% .099 \\
& 10 \% \quad .046 \\
& \text { fort } .033 \\
& \text { for topeoch . } 247 \\
& 1.235 \mathrm{mocec} \\
& \text { hofflem }=1.385 \\
& \text { hog my } \text { now } \frac{.099}{1.286} \\
& 6.43 \text { nuser } \\
& \begin{array}{r}
.10087 \text { ar } T=.62 \\
50 \% \\
10 \% \\
106 \\
\text { foot } \\
\sim .05 \\
\text { foot topen } \approx .036 \\
2.97 \text { meser }
\end{array} \\
& \text { holdorm }=1.705 \\
& \text { hiffup }=1.106
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { mise } \\
& \begin{array}{l}
\text { biid drd puccaet wiel } \\
\text { selting long hap width }
\end{array} \\
& 615.956 \text { sminalto ovely } \\
& \text { with foost } \varepsilon=.04 \text { ni (5) } 3 \text {) }
\end{aligned}
$$

$7 / 20 / 66$
615.811 sigle opt. VF $+\sqrt[5]{5}$. mithongral natad 120 .

Linitiolly

$$
\begin{gathered}
\text { peak } \cdot 1054 \times 10^{-1} \quad \& T=.175 \\
50 \% \quad .033 \\
10 \% \cdot .010 \\
\text { foo } .004 \\
\text { foo topeds }=.171 \\
.855 \text { usee }
\end{gathered}
$$

pualratio 8.
Finally

$$
\begin{aligned}
& \text { feok } .486 \\
& 5090.045 \\
& 10 \%_{0} .012 \\
& \text { foot.004 } \\
& \text { foot topeok }=.482 \\
& 2.41 \text { meser }
\end{aligned}
$$

holform 1.488

$$
\frac{\text { hoefup } \frac{.045}{\text { holfwidh } 1.443}}{\text { 俗 }}
$$

7.215 usec
hoeflom 1.303
hofup $\quad .033$
hofform 1.27
6.35 muse
$\left.\begin{array}{r}615.952 \text { adjunteffors rote from } 25 . \text { to } 50 \text {. }\} \text { in (3) } \\ \text { anglitude from } 2 \text { to. } 115\end{array}\right\}$ (1)
with $\lambda=10$. (slaw) $\varepsilon=.01$ in (6) -(10)
tuitially
pedk T. 23
50\%. .095
10\%.045
fort .032
for topodk
footopeds 198
.99 user

$$
\begin{gathered}
\text { holfown } .88 \\
\text { holup } .095 \\
\text { hofvedr } 3.785 \\
3.925
\end{gathered}
$$

Tuially (earlyhmp)
.063
.031

$$
\text { fot . } 023
$$

foot thopedr $\cdot 152$

- 76 user

$$
\begin{gathered}
\text { hoeftoova } 1.45 \\
\text { hotpup } .06 \\
\text { hopvd } 1.39 \\
6.95
\end{gathered}
$$

$$
\begin{aligned}
& \text { see pravims poses for setup of } 615.812 \\
& 615.825 \\
& 615.956 \\
& 615.957
\end{aligned}
$$

Secoloop. 43
Tho/66 Sunnerize Coubied infut locetions f tine comses. Sone me me fitting bo thy tog theopt.
$615.815 B \quad \operatorname{VF}(\lambda=50.) \varepsilon=.1$ in (1), $\operatorname{seow}(\lambda=10.) \varepsilon=0.1$ indelfire 1.9×5.47
(toonuch slow)

615.952 A foot $\varepsilon=.2$ in (3), soov $\varepsilon=.01 \mathrm{~min} 6,7,8,9,10 \quad .99 \times 3.925$

615.953 B fort $\varepsilon=0.04$ m $^{(3)}, .01 \mathrm{~m}(5)$, slow $\varepsilon=.01$ mi $6,8,10 \quad 1.26 \times 6.24$

aborty VF $\varepsilon=-$ (5)
$.958 \times .03 \mathrm{~min}(3)$
" 1.04×7.74
.959
.04 mi(4)
$4 \quad 2.7 \times 7.86$
infinal fizure

$$
\begin{aligned}
& 615.825 \text { fast } a=25 . \\
& \varepsilon=.1 \text { mi } 10 \\
& i=1 \mathrm{mi}(2) \\
& \varepsilon=.2 \mathrm{mi}(5)
\end{aligned}
$$

$$
\begin{aligned}
& E \\
& \varepsilon=.1 \text { min (7) } \simeq(2) \\
& \varepsilon=.2 \min (10) \simeq(5)
\end{aligned}
$$

pek Tr.17-

$$
50 \% .054
$$

foo .009
paht $T=.39+$

$$
102.018
$$

$$
.11
$$

pootoped $\cong .16$

$$
\text { fot . } 03
$$.8 mis

foot topede 1.362

$$
\begin{aligned}
& \text { hoffoum } .79 \\
& \text { hemp } .1054 \\
& \hline \text { hoffowt } .736 \\
& 3.68 \mathrm{msec}
\end{aligned}
$$

Conelty 615.813 woth factor 17.5

$$
\begin{aligned}
& 615.958 \text { for } \varepsilon=.03 \mathrm{mi}(3) \\
& 615.959 \text { fort } \varepsilon=.04 \mathrm{mi}(4)
\end{aligned}
$$

late $7 / 22 / 60$

7/22/66 sotbock fam ouputs

$$
\begin{array}{ll}
\text { hoflowirn } & 1.427 \\
\text { hoeps, } & .095
\end{array}
$$

$$
\begin{array}{ll}
\text { hoepp, } & .095 \\
\text { hotput } & 1.332
\end{array}
$$

$$
6.66 \text { mser }
$$

$$
\begin{aligned}
& 615.956 \\
& \text { fos } \text { ºr }^{2} \varepsilon=.04 \text { - in (3) } \\
& \text { slow } \varepsilon=.01 \mathrm{mi}(8),(1),(10) \\
& \text { peck }{ }^{.6755} \times 10^{-3} T=.24-.24 \\
& \text { 50\% . } 0954 \\
& 10 \% .0445 \\
& \begin{array}{r}
\text { foot } .032 \\
\text { for topen } \cdot 208 \\
1.04 \text { mer }
\end{array}
\end{aligned}
$$

1.04

$$
\begin{aligned}
& 615.957 \\
& \text { for } 2^{25} \varepsilon=.035 \text { ni (3) } \\
& \text { slow } \varepsilon=.01 \text { wis } 910 \\
& .591410^{-3} \quad .24 \\
& \times 10^{-3} .0954 \\
& .045 \\
& \text { fot } .0325 \\
& \text { foo } 4 \text { icpens.208 } \\
& 1.04 \text { mir }
\end{aligned}
$$

$$
\text { hoffom } 1.525
$$

$$
\frac{.095}{1.430}
$$

$$
7.15 \text { mur }
$$

$$
\begin{aligned}
& 615.812 \text { surglegt. VF } \stackrel{50}{ }=.15 \text {, } \sqrt[5]{s}=.01 \\
& \text { perk. } 838 \times 10^{-2} \text { of } T=.34 \\
& 50 \% .035 \\
& 10 \% .011 \\
& \text { foot. } 005 \\
& \text { foot Lopede }=.335 \\
& 1.675 \mathrm{msec} \\
& \begin{array}{l}
\text { hagichom } 1.38 \\
\text { hofys } 1.035 \\
\text { hoffintue } 1.345
\end{array} \\
& \begin{array}{c}
6.725 \\
\text { mis }
\end{array}
\end{aligned}
$$

7/28/66
worked on 7iz. 4 \& text of joint poper for several dayp. Aeso seminir rou fonal analyis (BonachSpoces) gotbode some computations on $7 / 26$ /
615.813 suigle opt. VF anplitude $17.5 \times \mathrm{V}$ s amplitide peak at $T=.27$

$$
\begin{aligned}
& 50 \% .021 \\
& 10 \% .011 \\
& \text { foot } .0085 \\
& \text { foot to peok } 1.307 \mathrm{mse} \\
& 615.958 \mathrm{lom}^{4} \varepsilon=.03 \mathrm{mi} \text { (3) } \\
& \sin \varepsilon=.01 \mathrm{mi}(8) \text { (1) (1) }
\end{aligned}
$$

hofdom 1.344

$$
\frac{\text { hefur } .021}{\text { hoffol } 1.323}
$$

6.615 mise

$$
\begin{aligned}
& \text { holform }=1.71 \\
& \text { hoyur } 138 \\
& \text { hoppint } 1.572
\end{aligned}
$$

7.86 musec

$$
\begin{aligned}
& +2+8 \times 1-2+8+8+4 \\
& \text { 6. }
\end{aligned}
$$

$40-438+8+8+208$
$88 \times 20-10$

π

8/2/66
hove siquiticantly more effeet upon sisuot slope then upon peok of EPSP haw hotr reor of for ripit location.
near nifir coould houe nos effed on sisurg phare for " coild " " " "peak
Trywith 615.825 ad wist $615.958 \rightarrow 615.960$
Hope that This may accoiel for a fais bit of
 Prevorusly, Ifont tha for any sungle location,' both slopz of peak wore numereasel" ol same foctor, which is
Pernopts should also do for the "Noteicop" study. on of phese larhèrtodoy tolhd with Bob t gave h dittes of first tempoges o/ Gant topy of first tho poges of Poi II. Ate would lithe nue to outhine lex for $7 i z .4$ i A will tadsle rest.
 of Sukahara, Mámen, Ramon-Molrner
615.960 line 615.958 wnt with I.C. for $T=1.0$ of aunsersisp at $T=0.24$ Sumnn 20 has .01814 whelue rif (1) $\frac{.29992}{.31806}$
Whereas control step evare $\frac{.31764}{.00042}$
coufinel unt th control EPSP pedk $=.00050925$ of thitites
ie. EPSP的 ratuad meaty 20% but step is distored only $=13 \%$ for Conbedince merpmeltoremwinther E_{t} fotery

826 A in (1)

$$
\begin{equation*}
826 B \tag{6}
\end{equation*}
$$

(1)
(16)
(1) $\frac{.266367}{.285723}$
(6) .29541
$\frac{\text { curtristap }}{\text { affro } \frac{.27958}{} .0062}$
controlstey $\cdot 2928$
control EPSP. 00826 control EPSP.00306
$8 / 4 / 66$
Gotbork 615.826 \& 615,960
Realized that these I,C. are for $F 1.0$
rathes Thanfor st.st.
But there remelts con be useful for the O distortion story, by usury the older controls for unperturbel core with these vitial conditions. Thas reper back to earher seriesfor

Now, Aetup 615.827 क 615.961 with twe stixt In fial conditwon. tahen from 646.5 sais of 652.003$)$
really waw to compre sisur slope tpeok sel anow secti story miadustal Me detectabluty 5 loy.

Teleshone cell porn Tunturi he is begning to thint of porp respane interis of inits को tha neifiching mile mogit nit he bomp the same. aeg de ashebit aurras poum ore destiti cooblfortomeaghlor.
$8 / 5 / 66$
goo off 4 pores an Fir. 4 for Bob Burke. Clos did calvin $p .5 \%$, bin neytontpro did not yet come back.
$8 / 30 / 66$ Bade from vocation
Ret. Hardin Cast. Handwriting poor
check onset
615.961 in (20) hams rel to st.st.
(early) park $=.44309 \times 10^{-3}$ at $T=.24$
slope at . 09 to. 10 is $\frac{.036517 \times 10^{-3}}{.01}=.003652$
compare 615,458 peak $=.509254 \times 10^{-3}$ at $E=24$

$$
\text { slog at .09t. } 10 \text { is } \frac{041989 \times 10^{-3}}{.01}=.0042
$$

 pate 87% olcomtal $\left(\begin{array}{l}\left.\frac{443}{509}\right)\end{array}>13 \% 0 \mathrm{mi}(3)\right.$ slope also 8790 ofcatiol \therefore no seppenatron of perak

61

	stst. nemminn	
1	17.2%	20
2	12%	14
3	8.6%	10
4	6.6%	7.7
5	5.7%	6.6

peak shittet lor Than slope
has seponotion is lers Thien had Hoped.

Mifit wodr better is use smalles
close mina of Gish midle So That close impni epfeds minily alope nother them slate

(16) pek $=.2746 \times 10^{-2}$ at $T=.42 \quad 89.7 \%$

$$
\begin{aligned}
& \text { slope dotod } 11 \quad .1355 \times 10^{-2} \\
& .185 \times 10^{-2} \\
& \hline .0170 \times 10^{-2}
\end{aligned}
$$

$\begin{gathered}\text { compra } .825 \\ \text { contial }\end{gathered}=.3061 \times 10^{-2}$ at $F .42$

$$
\begin{aligned}
& .15376 \\
& .13452 \\
& .01924 \times 10^{-2} \quad 88.3 \%
\end{aligned}
$$

6)

PA II add my two introhuctany payes add it on operational distmetion
Phits tax on airaitdiuzram shoued
Sblonalified as mens for poto Ersp
empthesis siomathe impoi; lecome denbrituc imponts make mechennisuos
indistingmishatle indistringmishatle.
Soubprotional elechric distinctuor
? wheter to adt equaturis of or mumaical examples to Pa II
$8 / 31 / 66$
Going own typerexpt pou Plil \& Bobs
$9 / 169 / 2 / 66$ Talkel wimpliuladniv joint numescoipt
Notel some nimporemonts.
Decilel to dools Mope indey plot (4) (4) (6) (8)

$$
\text { foo } z_{m}=0.0 \text { of } z_{m}=4.0
$$

Eypeot) improvel hof with os trie topeake with $Z_{m}=1.0$ becance of sudeat poorer corve with $Z_{m}=4.0$ be came of longir twe to pook.

A should give top priosity to completing suy oum popes/With atovedt also discuostion of rates ofrise va. amplitude Perlups (esteppench es ratio.

SAAMprigivan at NIH, Winte Masi is away con conselt Curt thuntington Belg 92 Ru 2204 Ext 6-4727
Neet plain luyf dedes

91266 Pogn, Nicdl pave woon Semminis in wade Mandrall's Call \rightarrow ashed meto cane Aphoved Reese 4 Bryptimen
He accepts 4 othais fint ther comprim ato or of dentrobenbitu pathway esp. Lidence That Mirial (clooked buring its in hiv. also bochs this midati. prothway. Hawsur he daims that he recoses from twaro kinds of cells ingpande leger. Those wotwin firets $L O T$ hove albatios numedidetg below MBL of do not get nore wher 2und LOT gres in dum z nitral inhilition. ©mers which appean to receive deep ingo whid he believes comes from
colthith als 1 Itted cells in Ams, Comn fiters. collathals of Tofted cells in Am, Comn fiters,
He aloo pointel to P_{2}, sand porstint oth Inding (smplace)
 prohnced ay wit. prom grambe alls. Hehried touse this as indey of when subacer inplelstet te elicit inhit? prom gramile Must let godon shepherd know.
615.831
forvitt
mod If 615,827
Typepali in $6-10$
Bothchais hove $\varepsilon=1$ in (1)
also preduur co $\lambda=\tau / 25$
Neod todmplicatedecka for (7) in $z_{m}=2$ need thm tho oppect peak $\pi .58$ tre hofdown $\approx 2.0+\mathrm{rc}$
pureteme $\frac{1}{200}$.
wW T. Change \& noplothing.

$$
80
$$

$9 / 5 / 66$
Clar doy toretup fresh dectes plan buft to tes (A) thei to peak t halfuridth for $Z_{m}=1.0$
Seep.64, seep.6 (615.042 als $6 / 28 / 66$)
9p.169 opbook8

$$
\begin{gathered}
615.102, .104 \\
615.012 \\
.013 \\
.014
\end{gathered}
$$

Campere (7) (7) $z_{11}=2$, with(4) $z_{m} z_{m}=4$
dro, aot 0, (5), (7), (9) $\sin \operatorname{cin}_{2} z_{m}=1.0$
But ar with fant $\lambda=\tau / 50.9 .972$
hoveres, alrady hone sono wit Enedun $\lambda=\tau / 25_{\text {". }}$
Toter plotter valuno from pi 169 of looke 8 with contral At can be seen that $Z_{m}=4$ increses twistoperic to Wrile $z_{m}=1.0$ protmes no imforment $z=0$ to $z=1$,

A is compined below straightreferance line. but \sec 1. 76
Q/6/66 PM tallud wint hasy githumen.

$916+97 / 64$
Duplicated bocks on plain urffcendo thing poppoel to bepre into NIIt production sum $9 / 7$ migit $1.54{ }^{5} 615.831$ Thoduisoffie with sumiz, one hypyol. $\varepsilon=1.00$
$\frac{1.21}{1.75}$
$\frac{4.50}{40}$
415.971
10172
peok $=.2389$ a $T=.545 \quad=.3885 \times 10^{-3}$ at $T=.535$
50% at 2206
10\% . 12
foot 0.095
foot topedz $=.45$
haflom $=\frac{1.53}{} .22$
hofpoith 1.31
$615.973 \quad$ made $t_{\mathrm{cm}}=100$
(7) $17_{m=2} 4.3 \quad 1+\pi / 50$

$$
\begin{aligned}
& \text { for (4) } d 7 m=4 . \\
&=.3885 \times 10^{-3} \text { at } T=.535
\end{aligned}
$$

.2203
.1085
.081
.454

This is Sig less
 $121 / 2 \%$
duQ.M., there ison osoential dipphence unally enbodise in mneertaitot stimiciple.

Let "stotes" be dofinit \& cuanbiznors

$$
\left(\operatorname{bos} \psi^{2}\right. \text { ebpines a nobibitity) }
$$

Then obsorvable is notruiquely predicled. Sevenal answers prosible of there is a probl. bust. own these.
He gave an artificial txawple where stots are dofinet as frouts on a unit sphere, and obsevables are 3×3 matrices The nob dist of tainet as an inner prodno A ruabvixfi with stale. A Eurns sey vetrix A, is abready Fortuct of a stat varialle \& ψ fal.

Pw. Vi somps those is an in forlan sanse in which Q.M. refresants ane logical extrenne for all possite logios of abzervables while closuial mechanires is otherathegre. Sefolistiral mechaurs hies beetween.

Hisbook on all this is inpoles. He gave some other reforences.
$9 / 7 / 66$
Prol. V gave a good le otre (itioduced ly Evans)

NIAMDMR Seminar. Axiomatic foundations of quantum mechanics. Speaker: Prof. V. S. Varadarajan, Dept.
of Mathematics, UCLA, Los Angeles, Calif. Bg. 3l, Conf. Fm. 4. of Mathematics, UCLA, Los Angeles, Calif. Bg. 3l, Conf. Rm. 4.

Gyionnatic appoach has special appeal to mathernativans, who do not share the plopsical intintirae \& jargon of phopsicos ts"
Gemel of axiomatic approach is in Dirke
But formdations ac cunut work stern fron Von Noumaun.
Hormiz ben for QPM. more done alos for dessical mechamios o con now have mothe versionsod of uncutarity, canplomenterity, ete.

Classical Medurnics, needs three waino thimgs defined

1. Physical law (quaritation, dom, ette polemticl fans)
2. State of Siptamen
3. Cbserbables

Clomial uodranio of smifecortide: state definel by six mambors.
ier a siydimarsional bector
(three spoceconds, o three moneritumin coosds)
Qen ofserootit is some function of the state.
e.g. hinaterenergy is for of ther momenta pot merpg " "l" "spocecoondinates otha ohrvablies man befons of all siy

Given the stale of 10, all states, fiture tepest car he
atsome timine comprited. All completely determied. For ary given state, observables con le computed.
615.832
(1)
(16)

$$
.325
$$

$$
.063
$$

$$
\begin{aligned}
& \text { fortoptiol } \\
& \text { for } 315
\end{aligned}
$$

$$
\text { heef dom } \simeq 1.213
$$

$$
1.15
$$

Whidehmisuprange

$$
\begin{aligned}
& \text { beck }=.34 \\
& 50 \% \approx .066 \\
& \text { foot }=.02,09 \\
& \text { fort } 2 \text { pooni } \approx .33 \\
& \text { Weldom }=\frac{1.24}{1.066}
\end{aligned}
$$

totipp $615 \cdot 8,33$

$$
=: \frac{1}{4 m(5)}
$$

il. peak slope imarerad hy sum 70 ast arivar pot beak amp (jurreared only $2 / 3 / 1 / \operatorname{lis} 9$

9/9/66 Gotbaek three compnter rums.
$615.832 \varepsilon=.1$ in (1) (3) ه(4) $\}$ turchanst fhe

peak in (1) $=\begin{array}{r}.9365 \times 10^{-2} \text { at } T=.344 \\ .8473\end{array}$
proak in(16) $\begin{aligned} & .84 \\ &=1.045 \times 10^{2} \text { at } T=.325 \\ & .9203\end{aligned}$
$\begin{array}{rr}\text { paokratio }= & \begin{array}{l}1.117 \\ 1.087 \quad \text { is lesptun } 12 \% \\ \text { lesthan } 9 \%\end{array}\end{array}$
$\begin{array}{lll}\text { (1) } & \text { in } & \text { sotro } \\ 937.4694 & .5761 .5497 & \\ 245.4090 & .4959 .5490 & 1.172 \\ 692.0604 & .0802 .0707 & 1.16\end{array}$
.06
i.e. hereget 17% morease of peak slope
out get -128 increase/pedtbalue

9/9/66
615,973
$\varepsilon=\sin (1), z_{n=3}=1,0$
fast $(r / 50)$
poab $=.338$ K $^{10^{-3}}$ at $T=.28$
52%
102
005
foo 0.04
footoperk $=.24_{1.2}$

This indme strapounclime
sareth y y ituphour (3)
achach, both (4) + (10) of $z_{m}=1.00$ liemeng cloce latwe st

Con use for.
Condudethat $z_{\text {in }}=4$. Sefintely woese
 do moteyced τ :ir
$9112 \mid 66$ gotluade onpri, bui did mot hom time to goover becorrse of Wade Marsholl's semmian on corstical polantialo wi the Aavi Towe
Took mostor The day.
Toms mas vemorons are two functionally distinguishable
Subpopinlatoms (cat forcpar stumpletion)
m
Alsoy mi is lemoched ont by membinstal
Ais sulitinatuon of mi fied frons field is admittedly an appiot
 Athough the supponed cursut antil(ations fre each spike, bivactrally, he dosso it for each veuron whoch geverates a opithe tran fonewry the S reurons (on which he concentrates) ofter fire ouly once, or very brutly. But he believes that he Which geverate the spike Heain. (He coned he) mistoten, becouse of The breorty of the Stianis). hughers, the time functon he frats in his matrif, hereally did this for a nemploze spichetrain, Iusisht agee tootirs posifibty, bre becance of arly one anfew-spithes, ot guess it may the spike conrut oftor dl, whith he colle epsp a ipsp.

Bury, Mrdrenup week
Udo hod cataract operation
Paul Fatt gave seminar
Wath seminaro.
alo preniany ebectroñ
bizged ramfoll in 4 years, sotrin boement.
anghor, Udo'seye seans to he doning fine as of $9 / 16 / 66$
Didrepnit filung durnig odd momente
beconse not in nood to edit or write.

9/13/66 computarongur 615.833 eiterit insed p. 74 here slopericuessel by $17.2 \%_{0}$
peak.ll by 8.790 (halfermin)
brithiscose is probobly pushed a little toofor

Pycent on fuit swcep nuay look like some of Bofs results.

$$
615.975+615.976 \text { seep.75 }
$$

setup

$$
\begin{aligned}
& 615.834 \\
& 615.977
\end{aligned}
$$

$$
\begin{aligned}
& 18 \% \approx .02+ \\
& \begin{array}{l}
\text { foot } \pi .01 \\
\text { foo topech } \approx .37 \quad 1.85 \text { mses }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \therefore \text { (1) }, \begin{array}{l}
615.977 \\
z_{m}=1, \lambda=\gamma / 50
\end{array} \\
& 615.978 \\
& \text { Emi(3), } z_{m}=1, x=y / 50
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\text { halfoom } \simeq .17 t \\
.018
\end{array} \\
& \begin{array}{ll}
\text { hopfowint } & .018 \\
.153 \\
.765
\end{array} \\
& .83 \times 10^{-3} \text { at } T=.09 \\
& 50 \% \quad .037 \\
& 10 \% \% \text {.014 } \\
& \text { foo topedk } \simeq .08 \\
& \begin{array}{ll}
\text { holform } & .367 \\
\text { holfand } & .037 \\
\text { holwordon } & .330
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon=.1 \text { in (1) } \\
& \varepsilon=.3 \text { in }(3) \text { this gires a } \\
& \varepsilon=.4 \text { in }(4) \\
& \text { of sod eprsp } \\
& \text { shopel " }
\end{aligned}
$$ loypeyrolanzation

(1) peak $=.9979 \times 10^{-2}$ at $T=.38$
(16) $11=1.107 \times 10^{-2}$ a $T=.36$

$$
\text { Ratio }=1.109 \quad \text { incrase is } 10.9 \%<11 \%
$$

*This seems to be the partial separatuon that is conpatille with a reasonable epsp shope with mar if far symptor loci

Su shepe at left
one can say how much is due to roch Elocus of then use these sel. values as weights for the factor of hyperpol. in a weighted unken of factors.
e.g. Supprare the contrilutrons were aqual in 615.834 then would hove .172
.085
.066

$$
\begin{aligned}
& 3 \underline{.323} \\
& .108 \rightarrow 10.8
\end{aligned}
$$

Which is close to 10.990 peah ricrease oftanied in Thiscere.
Sinilaly, if contituntuons were equal in
615.833 , get ol'2
.066

$$
3 \frac{.057}{1.295}
$$

$.098 \longrightarrow 9.8 \%$ whereas 8.7% wespoperund Praundely at this latepreak, contiluntion of (1) was digksty thonequal

Probolly should yet do the case where all couprantments hane $\sum,\left\{\begin{array}{l}\text { a mishted.1, } 2,3,3.4 .5\end{array}\right.$ allequal. more mimportan, tur may abresdy hawe? Psobobly only at $7=1.0$ no for stist. hyperpol.

Consolidate
$9 / 21 / 66$
Hond is much better
wore several letters yesterday
Tolloy get bock to work on sp papers. Will ce Phil Nelson fadoy to h how him the results of the recent calculations.
Nowrtinne to summarize what, from there \uparrow should be incorporated into The papers.

wheres $615.834 \backsim\left\{\begin{array}{l}\text { slope vicreare } 17 \% \\ \text { peck " } 10.9 \%\end{array}\right.$
Show there two to Phil. A con probably get sowisthing between those two, lin it is probably not worth the extra bother.

* The conclusion is this: When E is at a siple lows, whatever the locus, then hyperpol. causes the same proportionate increase in slope op peak of this is given by the increase of effective drianig potential of the boong this of formic ow long ago with the earlier hyperpol sums.
* But, with several E loci, this is no longer true, esp. if the peripheral loci are sesponsitle for a siguticon delay of peaks. Than, slope is dominated In increased dram sot, at rear locus lis peak
 and rel Evalken) see left. Presundly, at prate Ane,

Af compre 4 of $Z_{m}=2$.
with (7) of $\mathrm{Im}_{\mathrm{m}}=1$. botu tine toplede hophurtharsloyn (seep.76) This does give a larger holfuidt

$$
\begin{aligned}
& 4.05 \text { ratio } \\
& \text { comsershuith } 3.55
\end{aligned}
$$

comproduith 3.55
Bu halfurdth ouly borely exceeds sthaigh sepronce line. $\therefore \mathrm{Z}_{\mathrm{m}}=1$. shirts to left lin dres not extond fas enough ons to accosforthe deta. evere with $\mathrm{cem}_{\mathrm{m}}=7$
Conclusion is that $\mathrm{z}_{\mathrm{m}}=1.0$ is too shorf to accont for the lorger halfividths umlers ore durere to do very special bliddenog with Etime comses. That $\mathrm{zm}=4.0$ fots sig. lers well Than $Z_{m}=2.0$ of further wore, $Z_{n}=2.0$ ean ge us indto the expronge of holfuridths, esp.

Note: This has to be mijoin prap becaune suy ourn poper is not so specofic about notonenson.
$9 / 4 / 66$
\therefore Nad to wite a section for why paper on the affects of Steady hopperpolldrizing Current . upon EPSP shape.
A. Single locus Sung ergs early summarized don' Even need this proviso noes became eomptiny propestronal to driang pot. .) for large E get some nou-hirearity for several different dying prot.
B. Several loci
near locus dourine altos slope.
near locus coutritustas to peak.
C. All loci $\{$ uniform (least arkitiary.) This offects Tom Smith's paper of Phil Nelson's paper.

* Neat to write section for joint paper which deals with offer of $\mathrm{Z}_{\mathrm{m}}=4.0$ of $\mathrm{Zm}=1.0$ $Z_{m}=4.0$ makes all tine topech thafuribhs howear, slope of shape midey plat is shift to right中comparmy (4) of $Z_{m}=4$. \quad is. $3 \times(.4)=\Delta z=1.2$ with (7) of $Z_{m}=2$. is. $6 \times(.2)=\Delta z=1.2$ gives same thine to peak, but shorter hoff width because proychalf. This is in wrong direction in attempts to fit data.

Note that present steadystele luyperpol

$$
\begin{aligned}
& 17.178 \% \longrightarrow 20 \% \\
& 11.93 \% \longrightarrow 13.9 \% \\
& 8.58 \% \longrightarrow 10 \% \\
& 6.61 \% \longrightarrow 7.7 \% \\
& 5.7 \% \longrightarrow 6.64 \%
\end{aligned}
$$

fator 1.165 wouldicrease cursent from 0.5 to 0.5825

Whereas compute $V / V_{0}=\cosh \left(z_{m}-z\right) / \cosh Z_{m}$
for 10 cpts, $Z_{m}=1.8, \Delta Z_{m}=0.2$, get

z	$z_{m}-z$	$\operatorname{cohh}\left(z_{m}-z\right)$	$V V_{0}$	0.8.
0	1.8	3.107	1.0	20%
.2	1.6	2.577	.828	
.4	1.4	2.151	.692	13.8%
16	1.2	1.811	.583	
.8	1.0	1.543	.496	9.9%
1.0	0.8	1.337	.430	
1.2	0.4	1.185	.381	7.6%
1.4	0.4	1.081	.348	6.6%
1.6	0.2	1.020	.328	6.6%
1.8	0	1.0	.322	

These agree rother well with abone. shfoct they
agree bettr
than fire
stepbof. 0.4
presumedely lunpung
Groble.

9/23/66
Yesterday saw Phil o also stanlas to wite section on affact of luyperpol. curren.
Think it moy be usoful to prepore a figure bogedon new calcs. Where 20% higherfol
at soma, and use (1) of (4) of firechoin
Show (1) \& (4) seperately with withoni hypmol of show them together
Quly uncertainity is sel.mog.
One che is tra Phil has control thine to gregh $\approx 1.25 \mathrm{~min}$ o hypeplol $\approx .6$ " ie cul to one haff.
\therefore It need a conpromise lotween , 831, 2,3,4 Where the 20% ming helpa little.

$$
\begin{aligned}
& T \mathrm{ry}{ }^{\varepsilon}=0.1 \mathrm{in} \text { (1) with } \varepsilon=0.6 \mathrm{~m} \text { (4) } \\
& \text { teccame } 0.3 \text { in (4) wes to liffe in } .831 \\
& 0.3 \text { in (3) \& (4) wes polthy yoot } .832 \\
& 0.4 \cdots(4)+0.5 \text { m } 5 \text {) was Toometh min } 833 \\
& 0.3 \text { mi } \theta+0.4 \div(4) \text { weop then } 1.834
\end{aligned}
$$

len mot anengh shift of peak

On 10/6/66
Dr Martin A. GARSTENS
ONR Physics Brandr
Code 421
Worh. D.C. 20360
$0 \times-6-1890$
visited at N.I.H.
Geonge Weirs $\}$
Mowni Zelen who sent hin to see us.
mones of A talked with hin
He is interested in supporting, biomathematics. did ruot hnow of our group \rightarrow fiophysics of neswons syotom
He has met Livizzston
Elgasser
7.0. Sclunidt's meetings in boston ? Gerard?

Code 213

$$
\text { phoud } 10 / 14 / 66
$$

$9 / 23 / 66$
sy-5-5971
Dote $\approx \operatorname{Dec} 667 \pm 1$
Yestridoy had phove call from Gomes Gavery of ONR, Pasadewa
Setting up small invitational samion suggested hy Robert Stewort on Celbular Electrodynamies of plestintin in grey motter.
Stawart is gining a USC semues on "desigu for a cortoy"
besedon some of his eentier stadiè.
He want's group to see his herdivare at USC
I disans relatef minflications
Other people beniz aoked irchumele

gerard
E.L. El Bermett (Berbely B reacataritide in Suince Aug 5)

Purfura, who is joming shenples
Ranck
Morrell
in Norr or Dec., jontwo days: Emphasis on disassion rather thou pithication of poriers, but there mobobly will be some nost of priblication.
I corld give denhro-denditic stong.
Eepsp or dendrites infisld.
If Stwort is puhhing idea of fields guidmy deudsitic growth, which is what A suspect, Then it seeme likely to the much to non-specifie to hare nuch informational significance.

- 2 mi(2) \& (7

$$
\begin{equation*}
\text { . } 3 \text { m } \min \text { (3) }+8 \tag{1}
\end{equation*}
$$

615.836
(10)

Nelv/25
Herector
(1) contral
$.1637 \times 10^{-1}$ at $T=.405$
beak
(16) with hyperpol

$$
.1810 \times 10^{-1} \text { at } T=.385
$$

peakratio $=1.107$ or 10.7% increase smides to 615.834 on $p .82$
$T=.09$
.9631
$T=.08 \quad \frac{.7431}{.0935}$
$\begin{array}{ll}T=.08 & .7431 \\ =.07 & . .6419 \\ .1012\end{array}$
$=.06 \quad \begin{array}{r}.5342 \\ .05 \\ \frac{.4219}{.1123}\end{array}$

.9631	
$\frac{.8571}{.1060}$	1.154
13.49046	

13.4\% tholfway up

$$
\begin{array}{ll}
.8571 & 1.158 \\
\hline .7419 & 1.14 \\
.1152 & 1.16 \\
.6187 & 1.162 \\
.4896 & 1.151
\end{array}
$$

$$
1590 \text { as } 1 / 3 \text { woy up }
$$

$9 / 26 / 66$
Now have forar pages of typescript on "Eppects of stiody hyperpolarizing cursant upon EPSP shape"

Gus got bock 615.835 \& 6151836 (seep. 83) with syngitic ingul to all five cita.
\qquad Here c/25
$\varepsilon=0.1$ mall fire comportments.
(1) contral
$.9 / 52 \times 10^{-2}$ at $T=\frac{\text { peake }}{20}$
(16) with Ingrespol.

$$
\begin{aligned}
& .467 \\
& .458 ~ \& ~ h o l f y y ~ \\
& .454 \text { holdown }
\end{aligned}
$$

Peakratio 1.146 or 14.6% increase

$T=.06$.4677	.5446	foctor
.05	$\frac{.3779}{.0898}$	$\frac{.4406}{}$	1.167
	.1040	1.16	

slopehalfway up is in ereased otout 16%
Now setyp 615.837)
Cero 615.839 same with $\sum=1 .(1), 1.0$ (5) faster $\tau / 55$ inp t

$$
\begin{aligned}
& 1.049 \text { at } T=.195 \\
& .545+.06 \\
& .523 \text { ot } T=.91 \\
& \text { helfowith }=.85
\end{aligned}
$$

$$
\text { fotr } / 50
$$

$$
\begin{aligned}
& 615.979 . \varepsilon \text { min for (7m } \\
& \text { pakef. } 359 \text { of } t=.359 \\
& 50 \% \text { up } .152 \\
& 10 \% \text { up } .086 \\
& \text { foot }=.065^{21} \\
& \text { foot to pook }=.29 \text {. }
\end{aligned}
$$

holflowr 1.153
hofup .152
hofwith 1.00
compare with corhoir reaut for medinn r/25 p. 169 Bode 8

Were pahwos or. 41 \& foo to pook was. 32 hoffuid th wos $1.21-.19=1.02$ Values rather close to obone
$9 / 27 / 66$
Put in turce new froblens - see p. 92
Also, speì rone time gonoy oner data 4 positle
figures.
Plus 615.979
with ह $29 / 66$ got book oupnt withe $=10$

$$
Z_{m i}=.9
$$

$$
615.839 \quad \varepsilon=0.1 \mathrm{in} \text { (1) \& } 1.0 \mathrm{~m}(5) \quad 20 \text { \% haperale }
$$

got distuat doulle puek \sim fort $\begin{array}{r} \\ 50\end{array}$ compore peck omplitudes
(1) $\times 10^{-2}$ (16). 4426
stpede. 3714 at $T=.08$
2neffech .4230 a $T=.70$
.465 - $T=.69$
foctor
$\% .193$.
neoll 20%
abai 10%
615.838 grode E in forve epts seep.p.91 bere 20\% hyprepol for $4 / 50$
(1) contral

$$
.8285 \times 10^{-2} \text { at } T=.36
$$

peck

$$
\text { Poderotio }=1.123
$$

$$
T=.05 \quad .4296
$$

$$
.04 \quad .3500
$$

slope notio 1.167
(16) with hypepol?

$$
.9302 \quad T=.34
$$

$$
12.3 \% \text { nalito } 20 \%
$$

$$
12 \%
$$

$$
.5066
$$

$$
\begin{array}{r}
.4138 \\
. .0928
\end{array}
$$

$(16.7 \%$ natt 20% 17\%

Tor this ove try doublnig hyperpol to try to shoft peak earlier \& get sinaller peak fo tor
$9 / 29 / 66$
(615.837) $\varepsilon=0 /$ in all five cpts foot $\varepsilon / 50$
20% ligperpol.
compere with 615.835 four $p .92$
(1) contral
.4911 áた。12
peck
(16) with hapeapol

$$
.5762 \text { of } T=.11
$$

heflom
.246 of $T=.83$
.288 of $T=.806$
Pederatio $=1.172$
or 17.2% nalt 20%
Stopes

$$
T=. .04 \quad \frac{.3166}{.03} \quad \frac{.031}{.0795}
$$

Plom next computations
Double hypupel of .838 tity to s, mone pech shift.

$$
\begin{equation*}
\text { Wardify } .839 \text { brabio } r / 25 \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { of } 805 B \text { rpp } 28 \\
& 803 \mathrm{~B} \boldsymbol{\mathrm { c } p \mathrm { a } 2 6 \mathrm { b } \text { . } 1 \mathrm { m } 2} \\
& \text { paktor late .2in (4) }
\end{aligned}
$$

97
Now En (5) differs from Egg (2) only in the coustaty representing the driving potential.
sMother words, if $\gamma=\frac{a-b}{a}$

$$
\text { and if } U \equiv \gamma W
$$

Then $\gamma \dot{W}+\gamma(1+g) W=\gamma a g$
or $\quad \dot{W}+(1+g) W=a g$
which is exactly like (2)
$\therefore \quad U(t)=\gamma W(t)$ where $W(t)=V(t)$
Som of Case I-C of Cod I-A
Another words solution for $U(t)=V(t)-V_{\infty}$
for case $I-C$ is exactly $\gamma=\frac{a-b}{a}$ times the solution of case I-A.

Note that for loyperpol, $b<0$

9/29/66 Shotival
Whote up for Appendix to theonetical EPSP poper a a version for Zim to look over to explain why should get factor of increase, withow change - -1 shape, for hyperpol., when Σ in suigle cpo.
Here is this reduced version, for suigle hmpp first

$$
\begin{equation*}
\dot{V}+(1+g) V=a g+b \tag{1}
\end{equation*}
$$

where g is conductance transient
a is driunng poteulial $E_{\epsilon}-E_{2}$ b is steady state Im Rm batisee
Cese I-A $b=0, g(t)$ given, want $V(t)$ satiffgiry

$$
\begin{equation*}
\dot{V}+(1+g) V=a g \tag{2}
\end{equation*}
$$

Case I-B sterdy state for $b=$ const, $g=0$

$$
\begin{equation*}
V_{\infty}=b \tag{3}
\end{equation*}
$$

Case I-C supernippose $g(t)$ upon steraly state, $I-B$

$$
\begin{equation*}
\text { Let } U=V-V_{\infty}=V-b \tag{4}
\end{equation*}
$$

Subst. $\quad V=U+b$ in eq.(1)
ortanis

$$
\dot{U}+(1+g)(U+b)=a g+b
$$

$$
\text { or } \dot{U}+(1+g) U=(a-b) g+0 \quad \text { gotp. } 97 \text { (5) }
$$

99
(coutrinal fromp.100)
Qud, if only this comprostine is has a conductance change, this istre only forcniy term in the systen, when expressed in tosins of U_{i}.

Hence, as before

$$
U_{i}=\gamma W_{i}(t)
$$

where $\gamma=\frac{a-V_{i \infty}}{a}$
and $W_{i}(t)$ is solution of Cose II-A.

Now, could perhops make cleorles to some readers luy domig explicift for a two complartiont utodel. Then com hore siúble expressuans for steody state soluttons for b coust in Ept. (1)

$$
\begin{aligned}
& V_{1 \infty}+c\left(V_{1 \infty}-V_{2_{\infty}}\right)=b \\
& V_{20}+c\left(V_{2}-V_{1 \infty}\right)=0 \\
& V_{1 \alpha}+V_{2 \infty}=b \\
& \left(V_{1 \infty}-V_{2 \infty}\right)(1+2 c)=b \\
& 2 V_{100}=b\left(1+\frac{1}{1+2 c}\right) \quad V \quad \operatorname{set}+\frac{3}{5} \\
& \sqrt{1 \infty}=b\left(\frac{1+c}{1+2 c}\right), V_{2 \infty}=b\left(\frac{c}{1+2 c}\right)
\end{aligned}
$$

$9 / 30 / 66$
For compartmental problem

$$
\begin{aligned}
& \dot{V}_{1}+V_{1}+c\left(V_{1}-V_{2}\right)=b \\
& \dot{V}_{2}+V_{2}+c\left(2 V_{2}-V_{1}-V_{3}\right)=0 \\
& \cdot \\
& \dot{V}_{i}+(1+g) V_{i}+c \sum_{j \neq i}\left(V_{i}-V_{j}\right)=a g
\end{aligned}
$$

CaseII-A, b=0, $g(t)$ in ith cpt. couses $V_{1}(t), V_{2}(t)$ Solution.... $V_{i}(t) \cdots$
Cose II-B, stedy stale for $g=0$, b-const in cpt (1) get standand $V_{1 \infty}, V_{2 \infty}, \cdots V_{i \infty}, \cdots$
Cose II-C Supesinfrose $g(t)$ in ith cet. upon steady
Hatel of Case II-B stalel of case II-B
Refire, foreach cpt. $U_{i}=V_{i}-V_{\text {iso }}$
An ithegt. get

$$
\begin{array}{r}
\dot{U}_{i}+(1+g)\left(U_{i}+V_{i \infty}\right)+C \sum_{j+i}\left\{\left(V_{i}-V_{j}\right)-\left(V_{i \infty}-V_{j \infty}\right)\right\}=a g \\
\text { But from coselI-C, we hone }+c \sum_{j \neq i}\left(V_{i \infty}-V_{j \infty}\right)=-V_{i \infty} \\
\therefore \quad \dot{U}_{i}+(1+g)\left(U_{i}+c \sum_{j J_{i} i}^{1}\left(V_{i}-V_{j}\right)=\left(a-V_{i \infty}\right) g\right.
\end{array}
$$

Whith differs from Core II-A only in the effectine drimus portentio
is. $\quad d V_{1} / d T+\left(1+\varepsilon_{1}+g_{1}\right) V_{1}+a\left(V_{1}-V_{2}\right)=P_{1}$ $+(1+\varepsilon \cdot n), k_{0}$
Better still?

$$
\left[\begin{array}{l}
d V_{1} / d T+f_{1} V_{1}+a\left(V_{1}-V_{2}\right)=P_{1}+f_{1} V_{\text {eq }} \\
d V_{2} / d T+f_{2} V_{2}+a\left(V_{2}-V_{1}\right)=P_{2}+f_{2} V_{\text {eq }}
\end{array}\right.
$$

where $f_{1}(t)=\varepsilon_{1}+\varepsilon_{1}+g_{1}$

$$
\begin{aligned}
& f_{2}(t)=1+\varepsilon_{2}+g_{2} \\
& a=\frac{\text { core conductance botween compertuents }}{\text { mentrine conductonce }} \\
& \text { stst. = I/Gn conce of compatimen } \\
& P_{1}=\text { polasiz. st. potoutial } \neq V_{10}
\end{aligned}
$$

Then, for $P_{2}=0$, and $f_{1}=f_{2}=0$
Stealystatesolus are $V_{1 \infty}=\left(\frac{1+a}{1+2 a}\right) P_{1}$

$$
V_{2 \infty}=\left(\frac{a}{1+2 a}\right) P_{1}
$$

pomproge 99
$9 / 30 / 66$
What previous pages show is precise proportionality for $g(t)$ in a single cpt .
However with $g(t)$ in more than one pts one count fur average The separate affects because the separate systems he not The same. Approx. it may work, simply because g may be small. enough to cause very little now-hisarity.
Also, differencing (liz eon p. 136 of Boots 88) coned he illustrated most simply for two gits. Now examine notation to use for such a presentation.

$$
\begin{aligned}
\tau \dot{V}_{1}+\left(1+\varepsilon_{1}+g_{1}\right) V_{1} & +\frac{g_{12}}{g_{1}}\left(V_{1}-V_{2}\right)=F_{1} \\
\text { where } F_{1} & =\varepsilon_{1}\left(E_{\epsilon}-E_{r}\right)+g_{1}\left(E_{j}-E_{2}\right)+I_{a 1} R_{m} \\
& =\left(1+\varepsilon_{1}+g_{1}\right) V_{e q}+I_{a 1} R_{m} ?
\end{aligned}
$$

 alternative is notesnodul

$$
\begin{aligned}
& \dot{V}_{1}+\frac{1}{\tau}\left(1+\varepsilon_{1}+g_{1}\right) V_{1}+\frac{g_{12}}{c_{1}}\left(V_{1}-V_{2}\right)=\frac{\left(1+\varepsilon_{1} g_{1}\right) V_{c}}{\tau+\frac{z_{u}}{C_{1}}} \\
& V_{\text {eq }}=\frac{\varepsilon\left(E_{t}-E_{2}\right)+g\left(E_{j}-E_{2}\right)}{1+\varepsilon+g}=V^{*} \text { of No Moper }
\end{aligned}
$$

Idppelt, then hypapol -
$\dot{V}_{1}=$ rate of change of ooltoge,
:1 Cppocortatue
$=G_{r} \tau V_{1}$
$r \dot{V}_{1}$ is the rate of charge of V m in (1), nuiltiplied loy c to \rightarrow \rightarrow gorediniensivers ouola are sum of three
$f_{1}\left(V_{1}-V_{\text {eq }}\right) G_{r}=$ porollel cursents flown thrn $G_{n}, G_{E}+G_{j}$
$a\left(V_{1}-V_{2}\right) G_{r}=$ cursent flowipfrom (1) to (2)
$P_{1} G_{r}=I_{p_{1}}=$ poleriziz currew applied miside nab to ontsube at (1), paitine cursent mahes inside las wog of is defolarizig. Noy curren mas miste nure ny
$\left(+f_{1}\right) \sqrt{\text { aq }}$
motice that f_{1} Hoper $=\varepsilon\left(E_{\in}-E_{r}\right)+g\left(E_{j}-E_{r}\right)$
see Sothot $f_{1}=D$ implies $\varepsilon=0=g$
of $f_{1} V_{q_{1}}=0$
\therefore Consider replacing $f_{1}=1+g_{1}$ shere $g_{1}=\varepsilon+g$
and reploceng $f_{1} V_{\text {eq }}$ with $g \cdot V_{\text {now }}$
where $V_{n}=\frac{\varepsilon\left(E_{t}-E_{r}\right)+g\left(E_{j}-E_{r}\right)}{\varepsilon+\gamma}$
celpt whothis $\left(\frac{1+\varepsilon+g}{\varepsilon+g}\right) V_{\text {eq }}$ \#ै This men be
$9 / 30 / 66$

- For proposed appendix, use

$$
\begin{aligned}
& \tau \dot{V}_{1}+f_{1} V_{1}+a\left(V_{1}-V_{2}\right)=f_{1} V_{2}+P_{1} \\
& \tau \dot{V}_{2}+f_{2} V_{2}+a\left(V_{2}-V_{1}\right)=f_{2} V_{2 q}
\end{aligned}
$$

Case A, transient f_{2} in (2), $P_{1}=0, f_{1}=0$

$$
\text { let } \varphi_{A}(t) \text { be solution } V_{1}(t) \text { for this cone }
$$

I.C. $V_{1}=0=V_{2}$ at $t=0$
sybtan

$$
\begin{aligned}
& r \dot{V}_{1}+a\left(V_{1}-V_{2}\right)=P_{1} \\
& r \dot{V}_{2}+\left(1 f_{2} V_{2}+a\left(V_{2}-V_{1}\right)=Q_{2}\right.
\end{aligned}
$$

Solution will be called
$\operatorname{cose} B, \quad P_{1} \neq 0, \quad f_{1}=\phi=f_{2}$
stony state froth $\begin{aligned} V_{1}+a\left(V_{1}-V_{2}\right) & =P_{1} \\ V_{2}+a\left(V_{2}-V_{1}\right) & =0\end{aligned}$ solution V ${ }_{10}$
one reason whit mig he hotter to drop $E_{r}+$ replace with $G_{\in 0}+G_{j 0}$
p. 105

10/1/66 sefersiñog bods toprevions pages notice that $V_{\text {of }}=\frac{\varepsilon\left(E_{\epsilon}-E_{r}\right)+g\left(E_{j}-E_{r}\right)}{1+\varepsilon+g}$
which is some as V^{*} of NiM, aced. Popper represents the steady state for an isolated compartment with \& \& o .

At is not the driung potential o: even the Equilit. ffoltial in

$$
\begin{aligned}
& \text { Note that for } \varepsilon=0=g \text {, above Veq }=0 \\
& \text { for } \varepsilon=\infty \text {, genit, get } E_{E}-E_{r}=V_{\text {op }} \\
& \text { for } g=\infty \text {, init, get } E_{j}-E_{r}=V_{\text {op }}
\end{aligned}
$$

However, the affects driving potential yr which yon unltiply $f_{E}+G$; to get

$$
K=\frac{\varepsilon\left(E_{\epsilon}-E_{r}\right)+g\left(E_{j}-E_{r}\right)}{\varepsilon+g}=\frac{1+\varepsilon+g}{\varepsilon+g} V_{e q}
$$

The bey notion is "Synaptic current" $G_{E}\left(E_{E}-E_{r}\right)+G_{j}^{\prime}\left(E_{j} \cdot E_{R}\right)$ Thatydreciung fortontial is that effective potential Un Which you multiply synoptic conductance to obtain syroptecoonewtoriany far.
$9 / 30 / 66$

* Supportar fronits to semencher to buy or
sir popers now in prepariotions.
ulos raminded of these Fo day when talking with Phil Nelson of Mantal Klee.
(1) falling phese of EPSP is apperently not quely passive
(a) oversuart to hyperpol
(8) some evidence of late conductance abon nomel

Thiscon be due to
(S) late K pesmeability
(2) Rate of EPSPrise con be very olow in şite

* Lomatie locis, if there is much
tempreral dis pession as in cose,
of Klee's pory synaptios. Thir ocicols Fon his slous rel se, yet grea ruccegptititibh
My poper veeds a section on frate of rise considernig $\left\{\begin{array}{l}\text { bocation } \\ \text { inpint time conse }\end{array}\right.$
(3) Effectine symentic dsiang potential need not hhe $E \in-E s$, Cecouse, There moy be of as well as E gresent.
Hhe's polysiqnaptic EPSP triples for 30 mV hyperpol: $\frac{30+V_{\text {eg }}}{\text { veg }}=3$ or kog $=15 \mathrm{mV}$
hove to require

$$
\begin{gathered}
\text { hove to require } \frac{f_{1} K_{1}-f_{1} V_{1 \infty}}{f_{1} K_{1}}=\frac{f_{2} K_{2}-f_{2} V_{2 \infty}}{f_{2} K_{2}} \\
\text { or } 1-\frac{V_{1 \infty}}{K_{1}}=1-\frac{V_{2 \infty}}{K_{2}} \\
\text { or } \frac{V_{1 \infty}}{K_{1}}=\frac{V_{2 \infty}}{K_{2}} \\
\text { or } \frac{K_{1}}{K_{2}}=\frac{V_{1 \infty}}{V_{2 \infty}} \\
\text { Bor } \frac{V_{1 \infty}}{V_{2 \alpha}}=\frac{1+a}{a}=1+\frac{1}{a} ; \text { This }=2 \text { for } a=1
\end{gathered}
$$

An general $K_{1}+K_{2}$ would not satisfy this, even more so for
Bow, here, forfar, if $g_{1}=0, K_{1}=E_{E}-E_{2}$
suppose $E_{j}-E_{2}=-.1\left(E_{t}-E_{2}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\left\{_{2 \times 2}=a_{2}, P_{2}\right. \\
\frac{x-1}{x+1}=\frac{a}{a+1}
\end{array} \quad \text { Then } K_{2}=\left(E_{t}-E_{2}\right)\left(\frac{\varepsilon_{2}-0.1 g_{2}}{\varepsilon_{2}+g_{2}}\right) \\
& \begin{array}{ll}
\begin{array}{l}
\frac{x-1}{x+1}=\frac{a}{a+1} \\
x=1.1 a+t_{0} 1
\end{array} & =\left(E_{c}-E_{2}\right)\left(1-\frac{g_{0} 1 g_{2}}{\varepsilon_{2}+g_{2}}\right)
\end{array} \\
& \frac{K_{2}}{K_{1}}=\left(1-\frac{1.14 \overline{q_{2}}}{1+\varepsilon_{2} g_{2}}\right) \\
& \text { whereas } \frac{V_{2 a s}}{V_{10}}=\frac{a}{1+a}=\frac{a+1-1}{a+1}=1-\frac{1}{a+1} \\
& \therefore a+1=\frac{2 \cdot g_{2}+1}{1+1} \text { or } \varepsilon_{2} / g_{2}=1.1(a+1)-1=1.1 a+0.1
\end{aligned}
$$

$10 / 3 / 66$
For two compentinents, demoustrate difficulty when G_{E} in both compartmants with hyperpol.

$$
\begin{aligned}
& \tau \dot{V}_{1}+\left(1+f_{1}\right) V_{1}+a\left(V_{1}-V_{2}\right)=f_{1} K_{1}+P_{1} \\
& \tau V_{2}+\left(1+f_{2}\right) V_{2}+a\left(V_{2}-V_{1}\right)=f_{2} K_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
K_{1} & =\left\{\varepsilon_{1}\left(E_{\epsilon}-E_{r}\right)+g_{1}\left(E_{j}-E_{r}\right)\right\} /\left(\varepsilon_{1}+g_{1}\right) \\
& =\operatorname{simply} E_{t}-E_{r}, i f g_{1}=0 \\
K_{2} & =\left\{\varepsilon_{2}\left(E_{t}-E_{2}\right)+g_{2}\left(E_{j}-E_{r}\right)\right\} /\left(\varepsilon_{2}+g_{2}\right)
\end{aligned}
$$

Note that, if $\varepsilon_{1}(t)$ ismat proporitional ${ }_{0} g_{1}(t)$, then $K_{1} \neq$ const.
$\varepsilon_{2}(t)$
$K_{2} \neq$ coust. $\varepsilon_{2}(t) \cdots g_{2}(t), \quad K_{2} \neq$ ooust. Aeso, nigereral, $K_{1} \neq K_{2}$, unbers $g_{1}=0=g_{2}$
Now, forsteadyy P_{1}, define $U_{1}=V_{1}-V_{1 \infty}$, hence $V_{1}=U_{1}+V_{1 \infty}$

$$
U_{2}=V_{2}-V_{2 \infty}, \quad V_{2}=U_{2}+V_{2 \infty}
$$

Sulst, in sppton op D, E. Toobtain

$$
\begin{aligned}
& \tau \dot{U}_{1}+\left(1+f_{1}\right)\left(U_{1}^{+}+a\left(U_{1}-U_{2}\right)+\left(V_{10}-V_{2 \infty}\right)\right.=f_{1} K_{1}+P_{1} \\
& \tau \dot{U}_{2}+\left(1+f_{2}\right)\left(U_{2}+V_{20}\right)+a\left(U_{2}-U_{1}\right)+a\left(V_{2 \infty}-V_{1 \infty}\right)=f_{2} K_{2} \\
& \text { bis prom st.st. selintion, hore } V_{1 \infty}=P-a\left(V_{1 \infty}-V_{2 \infty}\right) \\
& V_{2 \infty}=-a\left(V_{200}-V_{1 \infty}\right) \\
& \therefore \quad \tau \dot{U}_{1}+\left(1+f_{1}\right) U_{1}+a\left(U_{1}-U_{2}\right)= f_{1}\left(K_{1}-V_{1 \infty}\right) \\
& \tau \dot{U}_{2}+\left(1+f_{2}\right) U_{2}+a\left(U_{2}-U_{1}\right)= f_{2}\left(K_{2}-V_{2 \infty}\right)
\end{aligned}
$$

If solution of this is to be proportional to $\varphi(T)$ sotution for orguial problem with $P_{1}=0$, then woul (sok

10/3
Gin agrees that my demonstration is valid for single Conductance locus, provided that the initial condition is zero for the hasic problem - which it is of course. But it is worth noting that the whole gannet of superposition rules (nipnt \rightarrow oigne) are actually valid only if one costumes zero initial conditions mall gits.

$$
\begin{aligned}
& G_{t}\left(E_{t}-V_{m}\right)+G_{j}\left(E_{j}-V_{m}\right)=\text { synaptic current } \\
& G_{t}\left(E_{t}-E_{r}\right)+G_{j}\left(E_{j}-E_{2}\right)=\text { forcing function }
\end{aligned}
$$

If $g=0, E_{E}-E_{r}$ is the intialdring force $\ln t E_{E}-V_{m}$ is the time losigniogn dining force and $\left(E_{\epsilon}-E_{r}-V_{200}\right.$ is the new initial drinig ore witusterdy state polarization.
$10 / 4666$
Whote Ist droft op oppendix in the nosming. bosed on p.108, but in expliait bbon symeptic curras of forcur fan as onp. 110
Saw Jore del Costillo's friend in afternov
Dr: Antonio Bornet Seoane
Div. of Biomedical tustrmene Ain

Seboal of Vedicme of Puerto Rico
Sau Guan, Puerto Rico 00905

$$
\mathrm{Tel}-725-5712
$$

Heisconcernd witu establishog a research conyouter O with pormelgating lis phypics o computation, initially needs to be faisly elementery seminiars. Would weleome seminans al any the.
Aftermoon tathel with Phil, Bob, Torn agreed to put ponts $\otimes \notin(\searrow$ in earlierfigure \& to piet data points in the multi cptcifit also Decided do wow new figme for $\begin{aligned} & 2 \mathrm{~m}\end{aligned}=\left\{\begin{array}{l}.9 \\ 1.8 \\ 3.6\end{array}\right.$ Now a fer moxe congutations.

$$
10 / 5 / 66
$$

War over jount manuscrigt nupelf this monnt
This ofternoon, surveyd computations; ani to plan oyt Hyperpol Serios see p. 88 and here for ossessuent.
Prebef Probtio. Evalues. Etracoure foot topede hoqwidth Corumant

For 17% hypepplini(1), .834 gave 17% slopemicrease $\% 10.9 \%$ peak wirese Weighted meon Tseap. 83
$\begin{array}{lllllll}\text { p. } 92 & .835 & -1 \text { inallfore } & \text { yte5 } & \sim .20 & 16 \% & 14.6 \% \\ 91 & .836 & 0,1,2, .3, .4, .5 & 11 & \sim .40 & 14 \% & 10.7 \%\end{array}$
Change to 20% hyperpol and fost $\tau / 50$

196	.837	of miall fine	$\boxed{2} / 50$.12	18.5%	17.2%
95	.838	$1, .2,3,3,0,5$	11	.36	17%	12%
94	.839	.1 in(1), l.0 m (5)	11	.08		

(10/5/6) Charge to 40 Io Inyperpol and r/25

$$
\begin{align*}
& 615.840 \cdot 1 \mathrm{mi}(1), .6 \sim(4), \tau / 25-40 \% \\
& \begin{array}{cccc}
.841 & 1.1 \text { all fine } 11 & 40 \% \\
.842 .1 .2, .3,4.5 & 11
\end{array} \\
& .842 \cdot 1, .2, .3, .4, .5 \\
& .080 \quad Z_{m}=3.6\left(\lambda_{12}=6.25\right) \quad \tau / 50 \quad \text { Enin (10) } \\
& \begin{array}{cccc}
.981 & 11 & 11 & 11 \\
.982 & 11 & 11 & 11
\end{array} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& 615.980 z_{m}=3.6 \\
& \varepsilon=01 \text {-m } 10 \\
& \text { peck }=.3382 \times 10^{-4} \text { at } T=1.76 \\
& \begin{array}{ll}
50 \% \text { wp } & .969 \\
10 \% \text { up } & \frac{.598}{4 . .371} \\
1+ & .093
\end{array} \\
& \begin{array}{l}
50 \% \text { odom }=\frac{3.171}{.969} \\
\text { hoff } \frac{\text { mp }}{\text { hofforitth } 2.202}
\end{array} \\
& \text { foot } \\
& \text { foot to perk }=1.255 \\
& 615.981 \quad z_{m}=3.6 \\
& \varepsilon=.1 \mathrm{~m}(1) \\
& \text { peach }=.3701 \times 10^{-2} \text { at } T=.078 \\
& \begin{array}{ll}
50 \% \text { up } & .0256 \\
109 \text { up } & .0086
\end{array} \\
& 50 \% \text { dom }=.287 \\
& \text { fou }=.0046 \\
& \text { hosp } \frac{.026}{\text { hofutt } .26} \\
& \text { foot toper }=.073
\end{aligned}
$$

$107 / 66$ A $10 / 10 / 66$ got bods compulations

couthol peok $=.7256^{x 10^{-2}}$ at $T=.46$
laypepol $11=.9177$ at $T=.17<$ nite, shiftor
factor of incresese $1.266 \quad 26.6 \%$ nief.
slope $.04 t .05$ is abow 39% micreosel
615.841 contodped2 $-.9152 \times 10^{-2}$ at $\left.T=.20\right\}$ sumel
$\varepsilon=1 / \min$
alfter.
henepol 1.223×10^{-2} \& $T=.19$
foter $=\frac{3}{1.34}$ or 3.4%
615.842 with $\varepsilon=1$ mi(1), 2 mi(2), 3 mi(3), .4 mi (4), $.5 \mathrm{mi}(5)$ peak shiftes from $T=.405 \mathrm{~T} .37$
pedkamplitude $\frac{.2043}{.1637}=1.25$ or 25%

$$
\begin{array}{rcc}
\text { slopeat.7.7 } & .6419 & .8694 \\
.6 & \frac{.5342}{.1027} & \frac{.7259}{.1435}
\end{array}
$$

fortor

$$
1.335
$$

$$
\begin{aligned}
& 615.982 \quad z_{m}=3.6, \varepsilon \sin \text { (8) } \\
& \text { peak }=.5482 \times 10^{-4} \text { at } 1.36 \\
& \begin{array}{ll}
50 \% \text { up } & .679 \\
10 \% \text { oun } & .394
\end{array} \\
& 10 \% \text { opp } \quad .394
\end{aligned}
$$

$$
\begin{aligned}
& \text { foot }=.323 \\
& \text { holfaider } 2.03 \\
& \text { foot toperk }=1.037 \\
& 615.983 \text { Zame }=3.6 \text {, Ein (6) } \\
& \text { peak }=.1366 \times 10^{-3} \text { at } .91 \\
& \begin{array}{l}
50 \% \text { up } \% .427 \\
10 \% \\
.233
\end{array} \\
& \begin{array}{r}
.233 \\
. \quad 1974 \\
\hline
\end{array} \\
& \text { hoflom }=1.995 \\
& \text { holfup }=.427 \\
& \text { foot }=.184 \\
& \text { heffirith }=1.57 \\
& \text { foot topeak }=.726
\end{aligned}
$$

$$
\begin{aligned}
& 1010 / 64 \\
& \text { Stap } 60.843 \text { ह=150 } 20 \% \text { hypipit } \\
& \left.\begin{array}{cc}
615.982 & \varepsilon \min 8 \\
.983 & \sum \sim-6
\end{array}\right\} z m=3.6 \\
& \text { Got bode } 10 / 11 / 66 \\
& \text { Compuap. } 116 \\
& 5 \sin (4) \text { nite to } \\
& 615.843 \\
& \text { contrafpel }=.6601 \times 10^{-2} \text { at } T=.17 \\
& \text { hypeppel pade }=.7804 \times 10^{-2} \text { a } T=.165 \\
& \text { focter of pathinerese }=1.173 \text { or } 17.3 \% \text { redt } 20 \% \\
& \text { shoulthy. } 55 \text { to deft athal pek outfuther } \\
& 615.844 \text { \&5 }
\end{aligned}
$$

$$
\begin{aligned}
& 615.985 \text { E=.1 in (5) } \\
& \begin{array}{lll}
615.986 & \varepsilon=1 \text { mi (2) } \\
615.987 & \sum=.1 \text { (3) }
\end{array} \\
& \text { all for } Z_{m}=3.6
\end{aligned}
$$

$$
\begin{aligned}
& 615.986 \quad \mathrm{Zm}=3.6 \quad \text { in (2) } \\
& \text { peik }=.1408 \times 10^{-2} \text { कt } T=.19 \\
& 50 \text { oup } .068 \\
& 10 \% \text { mpe } \frac{.028}{.040} \\
& \begin{array}{l}
\text { hoflom } \quad .676 \\
\text { hofp } \quad .068 \\
\hline
\end{array} \\
& \text { foot }=.018 \\
& \text { hoefowith } .608 \\
& \text { foot topeak }=.172 \\
& 615.987 \quad z_{m}=3.6 \quad 2 \text { in (3) } \\
& \text { padk }=.7011 \times 10^{-3} \text { at } E=.355 \\
& 509 \text { mp at } .135 \\
& 109 \text { up at } \frac{1.062}{41.073} \\
& \text { foot }=.044 \\
& \begin{array}{l}
\text { holforme } 1.038 \\
\hline \quad .135 \\
\hline \quad .90
\end{array} \\
& \text { foot topeak }=.311
\end{aligned}
$$

10/r/66 Gotbodk six rumspris ri yesterdoy

$$
\begin{aligned}
& 615.984 \quad Z_{m}=3.6 \quad \varepsilon=.1 \mathrm{mi}(3) 8(4), \varepsilon=.2 \mathrm{mi}(9)+\text { (10) fosta/s0 } \\
& \text { peak }=.1064 \times 10^{-2} \text { at } T=.42 \\
& \begin{array}{r}
\left.50 \% \text { ap ot } \begin{array}{r}
.157 \\
.070
\end{array}\right)
\end{array} \\
& .070 \\
& \text { foot }=.048 \\
& \text { haflow } 1.44 \\
& \text { hotup . } 16 \\
& \text { holfaith } 1.28
\end{aligned}
$$

$$
\text { foot topeak }=.37
$$

tryfor earlies
$-615.985 \quad z_{m}=3.6$ हin (5)

$$
\text { peal2 }=.2268 \times 10^{-3} \text { at } T=.72
$$

50% up at $\quad 319$
10% up 166
holdoum $\frac{1.68}{\text { hof up }} \frac{132}{\text { hoffundth } 1.36}$
foot topeak $=.59_{2}$
 got dipmin undelle

Mediun tive dourse dours
Setup $\frac{615.846}{615.847} \quad 20 \%$ hyperpol with $\sum=11$ in (i)done

$$
\begin{aligned}
& 615.847
\end{aligned}
$$

$$
\begin{aligned}
& .989 \text { "1 (1) g(2) } \\
& \text { (7) alone }
\end{aligned}
$$

10/12/66
615.844

Shope frotty good (1) $\varepsilon=.55$ im (4) 843, p. 118
coutral

$$
\text { pak }=.6888 \times 10^{-2} \text { ot } T=.43
$$

hepapol
$.7884 \times 10^{-2}$ at $た .17$
\therefore peek time shifted buy factor preater thon 2 peak niresesed loy foctor $=1.145 \quad 14.5-\%$ out of 20%
slepe
shope llura taristics
Slope at $T=.04$ to. 05

$$
\begin{array}{r}
.003384 \\
.002587 \\
\hline .000797
\end{array}
$$

$$
.004036
$$

$$
\frac{.003084}{.000952}
$$

1.194
1.195
\therefore slope sincreased 19.5%

$$
\begin{aligned}
& 615.989 \mathrm{zm}=3.6, \text { for } r / 50 \\
& \text { perk }=.464 \times 10^{-2} \text { at } T=.10 \\
& 509=.03 \\
& 10 \%=.0 \\
& \text { foot } \approx .005 \\
& \text { foot to perk }=.095
\end{aligned}
$$

Became $988+989$ were too coly, with to little

$$
\begin{aligned}
& 615.991 \\
& \begin{array}{l}
615.991 \\
\text { should try } \quad \varepsilon=.3 \text { in (3) with .2 } 9410
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{art} 615.849 \quad \varepsilon=.1 \text { in (1) } \varepsilon=.5 \mathrm{~m}(3)
\end{aligned}
$$

10/13/66 gob bodk compter oujut

$$
\begin{aligned}
& 615.990 \quad z_{m}=3.6 \text {, for } 4 / 50 \\
& \text { pate }=.8444 \times 10^{-4} \text { at } T=1.12 \\
& 50 \% \mathrm{up}=.545 \\
& 1090 y_{y}=\frac{.308}{4.237} \\
& \text { foot }=.25
\end{aligned}
$$

(4) alone

$$
\begin{aligned}
& \text { heldom }=2.34 \\
& \text { hotpp }
\end{aligned}
$$

$$
\text { holpuitle } 1.8
$$

$$
\text { foot topeak }=0.87
$$

$$
\text { foot }=.02
$$

$$
\begin{aligned}
& 615.988 \quad Z_{m}=3.6 \text {, fo9 } \psi / 50 \quad \varepsilon=1 / 20 \text { (2) }+(3) \\
& \text { peak }=.2005 \times 10^{-2} \text { at } T=.25 \\
& \begin{array}{l}
50 \% \mathrm{up}=.085 \\
1020
\end{array} \quad \begin{array}{l}
\text { hoflom }= \\
.032 \\
\hline .053
\end{array} \quad .89
\end{aligned}
$$

615.848
$C=10 \%$ hypuppot

$$
\varepsilon=.1 \operatorname{in} \text { (2) }
$$

peak toolate, at $T=.50$ or chil not shift

$$
\text { factor wos } \frac{.3787}{.3444}=1.1
$$

which instrenage of (2) \& (4) hyprevplfotoon

Slepe 615.847

$$
\begin{aligned}
& \begin{array}{rll}
.28 & .002419 & .002595 \\
\hline .27 & \begin{array}{l}
.002276 \\
\end{array} & \begin{array}{l}
.002440 \\
\end{array} \\
& & 1.0072 \\
& 1.00143
\end{array} \\
& \text { 9ppor 8\% }
\end{aligned}
$$

$10 / 13 / 66-10 / 14 / 66$
615.84620% hiperpol contiol wisth Eni (1) Cortrol for 615.844 oup. 122
withow hyperpel
pock. 6091×10^{-2} at $T=.13$
at $T=.43$, volue is .2875
.4014
.6889
with lyperpol
$.7281 \times 10^{-2}$ at $T=.13$
at $T=.17$ vache is .69965
> $\quad .08628$
.78593
opececf.p. 122
forsloper see left
615.847 20\% hyperpol contol inta E. in (4)
peok. 4684×10^{-2} at $T=.66$

$$
.5078 \times 10^{-2} \text { at } T=.66
$$ at $T=.43$

91.084
ot $T=17$
¢f 7.7% hy Trobin (4)?
alcoy 8%
Note that not pesfect 7. 7 O micsese everywhere in 1847 presumably because I.C. were not perfect st.st. ivahes as suggented by discigancy at easlost thes de. Contad is Uuggenthon. hy yorpol for $5=.07$ to. 13 ?manienn?

Equalizoj Time Consts.
Phil callal back 10/18/66
He andyped sevenal more examples.
He got an averoje $\varepsilon_{0} / \varepsilon_{1} \simeq 3.7$
for several cells.
Difficulty with semitog plot occurs opporenty only for those cells vith large. anomolows sectification.

At wowld be rice íf me could jistify regoindig. Mose as a diffesen coll Plil nichined to mepare a short jount note for Exp. Neurol.
Equalizuig Time Costs.

10/14/66
Yester dog, Phil got interested in checknig my equal plot agone constant senvi-log pelegolote data. Today, we looked att some of these result, "They were encouraguig. Two plots of $\frac{V-V_{\infty}}{V_{0}-V_{\infty}}$ an semilug paper worked fairly well. Then cuetried semilog plotting of slope, $\frac{d v}{d t}$. We found only begins of tail, but, usuig the c_{0} obtained from $\sqrt{7} \frac{d v}{d 7}$ plot, the tail coned he drown with fair confidence, and peeling gave a
$\cot 1568$

$$
\begin{aligned}
& \tau_{0}=8 \text { msec } \quad \text { Ratio } 2.3 \\
& \tau_{1}=3.5 \text { used }
\end{aligned}
$$

$\cot 1593$

$$
\begin{aligned}
& \tau_{0}=6.25 \quad \text { Ratio } 3.1 \\
& \tau_{1} \triangleq 2
\end{aligned}
$$

These agree with Z m between $2 \notin 3$, as worked ow in my the ry of eqrolizo tire constants. The slope data ran pom. 5 to 10 sec. The lott four points, in each core, agreed quite well with the tail slope taken from The $V t \frac{d v}{d t}$ fit

$$
615.994 Z_{m}=.9, \quad \varepsilon m \text { (4) }
$$

$$
\text { peak }=.6398 \times 10^{-3} \text { at } T=.12
$$

foot topeak. 102

$$
\begin{aligned}
& 615.992 z_{m}=.9 \text {, } 2 \text { min(2) } \\
& \text { pech }=.1109 \times 10^{-2} \text { ot } T=.072 \\
& \begin{array}{c}
\text { hofrup at } \frac{.0268}{10 \% 0} \frac{.0108}{.016}
\end{array} \\
& \text { foot }=.0068 \\
& \text { foot topeak }=.065
\end{aligned}
$$

$10 / 17 / 66$
615.849 20\% hyperpol $\varepsilon=.1$ ni $1(1)$

$$
\varepsilon=.5 \mathrm{mi}(3)
$$

$\left.\begin{array}{rl}\text { contral peek } & =.10326 \times 10^{-1} \text { at } T=.30 \\ \text { hyperplel } 11 & =.1177 \times 10^{-1} \text { a } T=.29\end{array}\right\}$ litte shift

$$
\begin{aligned}
& \text { hypepple } \left.11=.1177 \times 10^{-1} \text { की } T=.29\right\}_{\text {nead to }}^{\text {anount }} \\
& \text { factar here is } 1.14 \text { or } 14 \% \text {) } \\
& \text { amoult mi (3) } \\
& \begin{array}{l}
\text { mionlen to get } \\
\text { shilt } 10 \%=017
\end{array}
\end{aligned}
$$

Fy relucrigy miph in (3)
Condel micrease lath fy foctor \& 10 . Set sale to 09
$615.991 \quad q=.3$ min(3) with $\quad \varepsilon=.2$ in $(9)+(10) \quad Z_{m}=3.6$
This is seanch for gord point for fizuse.

$$
\begin{array}{ll}
\text { peak }=.2097 \times 10^{-2} & \text { at } T=.36 \\
50 \% \mathrm{mp}=.135 & \text { holfoloun } 1.127 \\
1090 \mathrm{ap} \frac{.062}{4.073} & \text { hoqup } \frac{.135}{.018} \\
\text { foot }=.044 & \text { halfuidth } .992
\end{array}
$$

fost to peak $=.316$
note this pech amplneanly doubles that of 984 (p.120) A that is why hof down comes earlier. Could thy 2 in (3)

Normally, EPSP invobes a flow of synaptic current from mesymeptic side, across R_{c} into postsynaptic mitrio? \& then ow gecrors
Cis shown at lower ringlet,
Won the imprilse blocks upstream
for the point where st. St. afore Vi is equal to The equitut. Pot. EC (which Tom, Bob, adult Phil all feel sure to be the case). Then The ayonal $\frac{d V_{i}}{d x}$ is decreased at the contact region. This means a reduction of (post to pres current from the st. st. amomit; rel. To The steady state, this appears as a poo. pret to post current, gong an EPSP in the normal direction.

If, as now seems unlikely, The impulse were dele to invade post the point were $V_{m}=E_{E}$, Then, as Morn in red, the ayounal $\frac{d V i}{d x}$ is micreosed at the contact region. This means an nicreose, of post tope) current from the st.st. amount; rel to the steady state, this appears as al neg pretofost Enrrent, giving an EPSP in The reversed from normal direction.
Therefore, The question really hangs upon the unknown properties of the spike generator in The presynopitic terminal menibrank. How far-fetclad would it leto postulate that impulse coned invade to the red curve?
$11 / 4 / 66$
Past two weeks spent in wiring or revisit, bobs on foin monsconpt $\#$ I and ny mannoupot \# IV, as well as insusnvi overall rearsvons with Tom Smith aswell as Bob 4 Phil. Also, was outwith cold for two days o blow par for several more.
Celso, protial defforastial equations come
Wedorthuso.
, discuned with others the tidy question of whether a low resistance electric coupled synapse could have its EPSP reversed by extreme steady state depolarization. Thad Thought it would, but tom had conuriced them it wowed not. th the end, we decided that Tom is probably signet, but The crucial point is whether the offerent impulse will be blocked far upstream from the synaptic terminals (moseversal) or if could machade to the terminals insprite of beni depolarized (randal).

We also mused on the siring That few others could appreciate. Namely Tho Tom orignidelly hod thought to disprove the chemical model toegthor with the Eccles somainodel, bi f the nidroduction of aludritic location hos saved The Chemical model from that fates and now, the only evidence that seems to separate the Chemical Model from our how Rebetrical model is this rare observation.

Paycholozicaly, one como aceop This rare observation as conchaive withow uphansting possible sources of error, or confusion, or artefact.
$11 / 4 / 66$
There is one other important aspect of electur complniy neglected ongrevoons page. That is The diphosic copocitatove coupling That would be riaddition to this mole D.C." aspect. The diphoric asper? " may be normally masked, hit when Thee "D.C", portion becomes very small, the diflusir aspect nay become noble potmen. Fist of all, who should be the polarity of the doplionic aspect? Ado hove the easters computations on this that led to several prizghig results (? previous book).

We also disamsed at length, whether Eos, \& 7 att's' 1955 report of two only observations of reversal could be regarded as conclusive evidence in favor of Chemical model. Ton did not feel so becouse of the rarity of The observation; he sow it only once?. on turic? in spite of intensive search. Snotherwards, it is a very atypical result. What does it mean? How coned it he explained away. *it would take only a very small amount of g to give this small IPSP with this berylarge $\left(V_{M}-E_{j}^{6}\right)$ driving potential ; The orly problem is timing. Bi the published records do not show shim artefacts, of we cannot he sure how precise They were when they aligned the separate records ni assembling their figures. Disynaptic intitifion wooed come in with rather small delay. It is a difficult question. Phil is inclined to accept those records a face value. Tom would prefer to see them repeated before accepting them as the most crucial evidence.

The answer is: Single locations on hanchlets do not solve SSP shape problem,
bi combinations (wort for) wort k.
$11 / 15 / 66$
also worked on the effect of different core resistance upon current flown constan field. placed seep. 138 t.
$11 / 15 / 66$
Spent mush tine of previouns weak on revisung ds ofts of goint poper.
Qho, todey, cheched hack on 665.013 \&.014 Book 8
Branchlet GE seepp. $179+184$
abo refer bads to pp. $172 \& 180$
Tomake sure that franchlet does not gove the shopes hoving long holfwidths with short tirin to plok.
for .013 in (13) estinate peak $T \approx .42$

$$
\begin{aligned}
& \begin{array}{l}
\text { hofup } \approx .19 \quad \text { hofflown } \approx \approx 1.35 \text { extrop. } \\
10 \% .09 \quad \text { hofyp } .19
\end{array} \\
& \text { foot } \approx .065 \\
& \text { foot to peack } \simeq .36 \\
& \text { or } 1.8 \text { usur } \\
& \begin{array}{c}
\text { haflown } \approx 1.35 \text { extrop. } \\
\text { hofop } \frac{.19}{1.16} \\
\text { holfwidth } \\
\text { or } 5.8 \mathrm{mmer} \text { extrop. }
\end{array}
\end{aligned}
$$

This oppens to he no miprovennen
The reewon (13) is letter thon (9) is lecause it is nearer to soma. Note that (9) of .013 grues peck ni (1) at $T \equiv .60\}$ seme
 whereas (14) \& (5) both give loter peok bias of (1) foottopeck $x .50$ or 2.5 mec , which is too much to fit data.
Now 665.103 examined on $p .26$ of Book 9 (thistode) of .23 anl this did gine a goodpair of shepe indires bu this is alredy a combination of locations, and therefore notessentially dofprent fron, other conbinotions. This is why it was not pressued when first noticed $7 / 6 / 66$. The poritime ponit is that combinations work withont necenoty of stranght chani. ise. This is not an arstepod of ST. chanin.

Now $\frac{d V}{d x}=\frac{\lambda c}{\cosh h / a)} \frac{d}{d x} \sinh \left(\frac{h}{x}-\frac{x}{\lambda}\right)$

$$
=\frac{-c}{\cosh (h / \lambda)} \cosh \left(\frac{h}{\lambda}-\frac{x}{\lambda}\right) \quad \frac{d V_{i}}{d x}=C+\frac{d V}{d x}
$$

at $x=0$ ant $x=2 h, \frac{d V}{d x}=-C$
at midpoint, $x=h$, get $\frac{d V}{d x}=\frac{-c}{\cosh (h / a)} \quad \cosh z=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots$

$$
\therefore \frac{d V_{i}}{d x_{\text {mad }}}=C\left[1-\operatorname{sech}\left(\frac{h}{\lambda}\right)\right]
$$

for h / λ very small
$\left[\left[1-\operatorname{nech}\left(\frac{n}{\lambda}\right)\right] \simeq \frac{1}{2}(h / \lambda)^{2}\right.$
and $\frac{d V_{i}}{d x_{n=t}}=\frac{c}{2}\left(\frac{h}{\lambda}\right)^{2}$

$$
-g_{i} \frac{d V_{2}}{d x}=-\frac{c h^{2}}{2 h_{m}}
$$

which is the maxim current that con flow

$$
\int_{0}^{h} \frac{c x d x}{\Lambda_{m}}=\frac{c h^{2}}{2 h_{m}}=\frac{c\left(\frac{h}{\lambda}\right)^{2}}{2 \lambda_{i}}
$$

for Wa very large. $\operatorname{sech}(1 / 2)$ leconso weygunal and $\frac{d V_{i}}{d x_{\text {mol }}} \simeq C$

$$
-g_{i} \frac{d V_{i}}{d x}=-c g_{i}=-\frac{c \lambda^{2}}{r_{m}}
$$

which is the applied grobiat times the core Conductance

$$
g_{i}=\frac{1}{r_{i}}=\frac{\lambda^{2}}{n_{m}}
$$

for an isppotential core

$$
\text { Ratio of } \frac{\text { corecurent }}{\text { man ep crisper. }}=2\left(\frac{\lambda}{h}\right)^{2}\left[1-\operatorname{sech}\left(\frac{h}{\lambda}\right)\right]
$$

$11 / 16 / 66$ (p.121 atsog 9 Book 6)
Refersügbock to earlier results, place cylinider, bupth $2 h$ in a constant $\frac{d V e}{d x}=C$

St. St. solution

$$
\begin{aligned}
V & =V_{i}-\left(V_{e}+E_{r}\right) \\
& =\lambda c\left\{\frac{\sinh (h / \lambda-x / \lambda)}{\cosh (h / \lambda)}\right\}
\end{aligned}
$$

andat $x=0$

$$
V_{(0)}=\lambda c \operatorname{tanch}(h / \lambda)
$$

for $h / \lambda<0.25$, get $V_{0}=h c<$ inithi 2%
for $h / \lambda>2.3$, get $V_{0} \simeq \lambda c$ insthin 2%
To cuglinder 2 mm long, $h=1$ nam
Let $c=10 \mathrm{mV} / \mathrm{mm}^{2}$
Then for

λ	W / λ	V_{0}
250μ	4	$\lambda c=2.5 \mathrm{mV}$
1 mm	1	7.6 mV
(meter (inine $)$	10^{-3}	$h c=10 \mathrm{mV}$

 for λ verysuall, h / λ very loyese $\frac{d V_{i}}{d x} \simeq C$ at millle ϕ acsent is limeted ly coreressistace
Usefult tolookat mixt-cose-cursent $=-g_{i} \frac{d V_{i}}{d x_{\text {mid }}}$ $g_{i}=\frac{1}{r_{i}}=\frac{\lambda^{2}}{\lambda_{m}}$
ats. geytaninixul
$(-n)+x)(-n+1=1$

$$
\sqrt{4}-2.12 x
$$

$$
y+9 \times 6)=91
$$

 fing

week $11 / 28-12 / 3\left\{\begin{array}{l}\text { did sone work on theortical EPsP poper } \\ \text { also prpperel for tiop to Pesadena \& Ja Jolla }\end{array}\right.$
wedk 12/5-12/10 ONR Auterdixaphinary Saences Synyposition
in Posadera Dec $5+6$
$\left.\begin{array}{l}\text { Burbank (Lavis) } \\ \text { \& Iraine Comppos }\end{array}\right\}$ Dec. 7
Fafolla Dec 8,9,10
$12 / 13 / 66$
Got a very positurie resporere to denlso-dondritic story. Both the theoretical prediction of implicotions of pa thuy. asso, hidsly UCLA wos inimpened loy explanation of the period III stanh hispotentid which may apply to numerors other situcations. Lamaston was inpressed hy inter dicijphiary aspee of d-d papes. Hogirvara, Bullock, Atrinisston all pleased to hone -me visit noxt sunner.
Beotpreses à Posallona ware Monell, Dentsch, Rounguağ a mine
Tilm of periplocel newe grow th was intresting
gerard \& Scheibel's did not come
Stewart did not seacross wary well, he still seand to wow both harhware A hidelyical clanits withow any comprormise. Vory defonsive to any comment.
Now, mist get boch to completion of firial dr oft of theoretical EPSP poper.

011
(4)
 er से
\qquad

Jomary $5+6,1967$
Eurek a, frioshod "Theoreticol Synaptic Poleutial" paper. Ytoneten xeroy copies heody with fizs etc. Plan to hove conference wirth all four collaborators oberg
Put early drofto nomos, plots, charts, takles in fittring cabuet, Col1, rows.
fan 9, 1967 hodnuecting with all collaborators Prodved inproved Sinnmasies X obistols
Jan 11, 1967 Clearances come Thm for
popers IV $+\frac{V}{n}$ Arthitis. for 10,11,12 Catarat operation: Udo at Silley
Tan 13,1967 Completed Moodifications of retyping
based on suggestions of ot Nesas

repoges 16,35 and
heoretical Poper
Also, Today jim arked me to prepare a new, updated form 57 for procersing.

$$
8808+5
$$

$$
\int_{100}^{1}+\frac{1}{4}+0
$$

$$
30, \times 350 e^{2}\left(30>9+00^{4} 303\right.
$$

$$
\rho
$$

(1)

1/16/67 Thoortical EPSP Poper
Wade up osiguial one xeroy copy for submission forproblication.
thayistance 10 xerex copies before ref. moo. Changed 3 xerop copies mode todoy
14 original with modifoytations
But some lack figo, fog logents, tables qraperences
Oforiscinal ton, 1 needed for derance
4 for colldorators
${ }_{6}$ Ifor wike fuortes
leavniy four copies which t
have used for veroy fisp, lopuls it
Ofterorignial ton xeroyed, revised pp. $16,35,40$

$$
\begin{aligned}
& \text { of Doorly albo vetyry } 3,5,6,9,41 \\
& \text { + convectar Table I } \\
& \text { as well as off. nos. }
\end{aligned}
$$

Sendury eff orignialt one of the three new xasopes.
Thi leaves Two complete xeroy copies infinial form anf four incouplete" "op the eastiesform"

Submittof sipersonly Tom Smith $1 / 17 / 67$
tophriot-Soc!
$1 / 25 / 67$
Now-form 54 \& supporting cursicalim vitae ete completes. Now must clearaway bocklog of chores.
$\checkmark 1 / 30 / 67$ I. alostaob for ONR Pasadana
V II mestwedz. Ourarzeneen to resume work witt Gordon Sheply
v $1 / 3 i / 67$
2/15/67
$v 1 / 31 / 67$
$v 2 / 15 / 67$
to Berkley requar for opinion
to Sonise Nurshall
to Jianozston
to Hamion
? del Castello
Hellerstañ

- 11

$$
\Gamma 0
$$

2/1/67 Rescalitignemono
Worked ow a memo for Phil \& Bot Burke taday.
Here is summing of riov interesting points anoo of Which t hone warked onl before
For Noqual dablritic trees, susprocel area
For a spherical sama

$$
A_{D}=N L \pi d
$$

$$
A_{s}=4 \pi a^{2}
$$

Dewhitié osoma surforcorea ratio, $A_{D} / A_{s}=(N L d) /\left(4 a^{2}\right)$ Topeasere $A D / A s$, one posititility is Nconitant, $L \alpha d \propto a$ another " " " , $L^{3 / 2} \propto d^{3 / 4} \propto a$ Bioforms, Ncould change also.

$$
\begin{aligned}
& G_{D}=N G_{\infty} \tanh (L / \lambda) \\
& G_{\infty}=\frac{1}{\lambda r_{i}}=\frac{\lambda}{r_{m}}=\frac{\lambda \pi d}{R_{m}}=\frac{L \pi d}{R_{m}}\left(\frac{\lambda}{L}\right) \\
& \therefore N G_{\infty}=\left(\frac{A_{D}}{R_{m}}\right)\left(\frac{\lambda}{L}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore N G_{\infty}=\left(R_{m}\right)(\bar{L}) \\
& \text { and } G_{D}=\left(\frac{A_{D}}{R_{m}}\right)\left(\frac{\lambda}{L}\right) \tanh (L / \lambda)
\end{aligned}
$$

Gilso, $G_{s}=A_{s} / R_{m}$ forRmconstont

$$
\begin{aligned}
\therefore \rho & =G_{D} / G_{S}=\left(A_{D} / A_{S}\right)(\lambda / L) \tanh (L / \lambda) \\
R_{N} & =\frac{\operatorname{Rmm}_{\text {m }}(\lambda / L) \tanh (L / \lambda)}{A_{s}+A_{D}}=\frac{\operatorname{Rmm}_{s}(1+\rho)}{\operatorname{Ar}}
\end{aligned}
$$

Qulittemoregunerally, $\beta=\left(\frac{N L \pi d}{A s}\right)\left(\frac{\lambda}{K}\right) \tanh (L / \lambda)$
SFitlmoregenerally $p=\frac{\pi}{A_{s}} \sum_{j=1} H_{j} d_{j}\left(\frac{\lambda_{j}}{Z_{j}}\right) \tanh \left(2 L_{j} / \lambda_{j}\right)$

There are mory other rescoling cases prostible.
(A) Suppose. N changes with neuronsize
(B) Suppose R_{m} changes with neuson sige
(c) Suppose AD/As il ic ic y
(D) suppose The rellation Lus a cere difforen it from the coses considered.

CoseIII, Suppose tanh $(4, \lambda) \approx 1$

$$
\rho \approx\left(\frac{A_{D}}{A_{S}}\right)\left(\frac{A}{L}\right) \text { constanl }
$$

Then increase of $\frac{A_{D}}{A s}$ has to he compersated hy virresse of $\frac{L}{\lambda}$ ise. more ramete dendintes.
conversely, decrease of $\frac{A_{D}}{A S}$ compensater ly decrese of $\frac{L}{\lambda}$

2/1/67 If we constrain (NConstont, we conwse the sumple form

$$
\rho=\left(\frac{A_{D}}{A_{S}}\right)(\lambda / h) \operatorname{tah}(L / \lambda)
$$

Cese I: set ρ constant, $\left(A_{D} / A_{S}\right)$ constant, N constant, $R_{\text {mencost }}$ Tegetho, there
iimply that also L / λ constant
i.e. $L d \propto a^{2}$ and $L / \sqrt{d}=$ const.

$$
\begin{array}{ll}
& \therefore L \propto d^{1 / 2} \\
\text { ie. } L \propto a^{2 / 3} \propto A_{s}^{1 / 3} & L d \propto d^{3} \propto a^{2} \propto d^{3 / 2} \\
d \propto a^{4 / 3} \propto A_{s}^{2 / 3} & \text { or } L \propto a^{2 / 3} \alpha d^{3 / 44} \propto L^{3 / 2} \\
& L \propto a^{4 / 3} \\
& L d \propto a^{2 / 3+4 / 3}=a^{6 / 3}=a^{2}
\end{array}
$$

Forsuchscaling $R_{N} \propto \frac{1}{A_{s}}$
Case II, Suppose $L \propto d \propto a$, preserving $A D / A s$, but not p Here abo N and Rrm oreconst.

Here $4 / \lambda \propto a / \sqrt{a} \propto \sqrt{a}$
Suppose une double a, thus quadrupliri area \& vireasiy $\sqrt{a} l y 1.414$
buifrieserany AD/As of comzse

Af nistate 1, $4 / \pi=1.0$

$$
\begin{aligned}
& \text { Then } \frac{p_{2}}{p_{1}}=\frac{(1.414)^{-1}}{1} \frac{\tanh (1.414)}{\tanh (1)}=(0.707)\left(\frac{.889}{.762}\right) \\
& =\frac{.628}{.762}=0.824 \text { d.t.pdecreases with ingare } \\
& \frac{R_{N_{2}}}{R_{N_{1}}}=\frac{1\left(1+\rho_{1}\right)}{4\left(1+0.824 \rho_{1}\right)} \\
& \text { become L/ג io minerassing } \\
& \text { i.e. Jour fold mincese in area } \\
& \text { cames leso thon fowfold decrease }
\end{aligned}
$$

Gordou thints we shoued tiy to fuid wame for these new synoptic prot hwoys. Also, he thinsho it woued be good to simulate the mitial gromile micractitons; (1) to prove to doubters but of earise (thischoes not intisque no)
(2) Now thunp coould probobly furn ap,
He thintrs of oscillating waves generatich ly graniole population aspars/ otcilbtory iitaction. My rough compitation shoued that gronaile re/ri $\simeq 25$

At is intersesting that ny computa computation yeed 10 compared with valuesless than / for mitiol.
A urged him to explore marsupials anf insectioner molys sume with the hope that he mught fuid sigmificantly
difterent arsongements or sumhers of The different as sangements or yyunhers of The suitial + gronule poprulatious \& O. Nerve. With anteater, it ouft to he casy to norcotize The at offactory nenve crithout donis so to bulb thou one sady decther
$2 / 13 / 67$
Gordon shephord was here last weele. We wosked on the froblem of figmes and teft for completion of Offactory Bulb poper. Iwill sumunarige \& recop renlts of this wek on next page. seepp 157 -
Todoy, seceived reminder to convest all popans from 'Honnguell 800 to 360 lofore en o opskers. Thergfore hecibled to star boll yollnig. Contactod fim Standish 65265 Room 1104 isedg 12 who is open shop Progranmer liason.
also, got BoX 187 assigned in Production Poom.
$\left.\begin{array}{c}\text { Put in } \begin{array}{c}W \\ W\end{array} \text { R } G 11 C \\ W 9 C\end{array}\right\}$ Brouch extrapolation
WxR82C ξ plothing subroantine
To be converted Iog Zander's program VEZ 499 and chengel to cancersion accon' 04504-15925
prated lulb.
$214 / 67$
Don Walter phowed. He + Wary Prazier me orjanizn a workshop. Teature Twkey End of Marels als other statificians a phupiologists Wondered i / I would uxplore with them the relation of ny fild cales. To their statisticel avalyses.
t said wo thone to fwich withing paper with collaborator.
Also, eastier, laad Fomin give a very modest semnier abont developnt Mathenatical Biophysical studies at fust. Op Borphmpias Moscow Thus io where group pussued my hanching studiea into syncitial inghs resistatces.

7omin's model of excit. Arpoct. seanal to be barerty sumple, lut he may hove a better model winich he was not dicansm.
2/15/67 Athink would he a good ridea for me to get bock to uny excitalion model and perhops encoura De John bions to prisue some the mathematical stability problems.
Bus first, peahoped Cleanup mplesial soma wi,th freld poper!. Speul some the to by looking ose cher, oftr gethin letler off and
bofore resint of doectory bulf next week.

2/21/67 Plon to convest nuore HAC progrommen Refer bock topoze 888 of Book 5
and poages 42,61+62 of Booh 5
Wital calcs were woth WXR 795 C main 796

$$
\begin{aligned}
& 93 C\left\{\begin{array}{l}
96 \\
94 C \\
95 C \\
97 \\
82 C \text { extracell }
\end{array}\right. \\
& 870
\end{aligned}
$$

But had Mode an
nusuccosful chouge
Cmoblem with ormonts
(problem with armants taquiodinn)

$$
\text { to } 796 \mathrm{C} \text { with } 96 \times 97
$$

Today, correctbblunders of renemberd 797
with 98

$$
\begin{array}{r}
\text { woth } 98 \\
\text { a } 99 \\
95 \\
82
\end{array}
$$

in poeparation for
conversoon ty zaiber prowrur
VEZ 499

$$
\begin{aligned}
& \text { seep. } 153 \\
& \text { thistook }
\end{aligned}
$$

Oso WXR $751 \mathrm{C} \rightarrow$ WXR752 for vembrane nodel should be converted. Abo, earlier field t currew step programs.

Sepi 65 , t went to Tohyo
Now-65, Gordon pieed togethes. "fourth droft" and hod this typed in Sueden.
alfurgh Gordon ratwnod from Suredon Nov. 66 was tied up with completing EPSP popers which were not finished until Jon 67 .
Teb. b-10 gordon tweek her to
leactevate propect.
We aim to finbsh ousing Werchb?
He hos taden ou several fure serisions
I am to wosk on Part III (tromsition to the is worknij on Discussion which we made memy notes on. Fivally we will sewisite mituodnction.
seepp. 151,152

Mondy $2 / 2 \pi / 67$ Abow complete OBulb Poper Brief Auronology

Gordou Shepherd arsiced Septemher 1962
LDeooloped program durny 1963 (Book 3) WXR T91 C got bosking in Amany 1964 sepp $67-64$ of 100 k 3 pp $17-82$ u

WXR 793 C p. 15 botk. 4
active Nowlrave sepesate WXR 751 C p. 44 "" Gramule throod III. Angtspot $64 \begin{gathered}\text { p. } 56-67 \text { " } \\ 72-27\end{gathered}$
Sept-Oct 1964 dewloped nicomplete firit dropt $2-27$

Novenaber 64 tconvected arsons q developed texfon ponstivel os lore Second dopft put on ditto
Ion 65, Gordon adebld a few changes 4 cellel thir 3nd dsts July 65, oftr compting tan thor poper, forlon \& A romp hel ow figure legents (fote tionsh) togo with Avg 65, Dowothy sough typed most of this material.

HAC Conkersvon.

WXR $752 \mathrm{C} \sqrt{3}$

WXRLOIC

10 C	51 C
11 C	52 C
12 C	33 C

$3 / 1 / 67$
Yesterday. Did same work on Pest III Put together complete revision of Past II yestridey and this morning and gore to Dorothy to type.
Swam at Y at moon. Will see if such a routine can helpget through writing chores. Also avoiding candy 4 coke snacks during yoriting, using tangerines and unsweetened tea; thin wry should avoid the wiglet gain likely to otherwise occur when in final throws of finishing a popes.
Now, inst really come to grips with post III
3/17/67 pest two weeks, got some withing done wrote fa foll letters.
did HAC Converswon 797 C \& 97 C (plea more) huvestigated Kobe-Osalea, whoualstate Dept.

Boons from frbbur library borond OIR Tony Port Assist.
Today tatted with Being Specht
also hone hod trouble with sinus and? earache
Still need HAC conversion of (see left).
Celso, get new coss interpreted on 029 hitespreter Card lunch

His data from frog node are highly reproducible. tetrodotoyin bock sodimpcursent completely of leaves postasim" "minted.
In contrast tetra thylammonim blocks selectively only the potassium conductance ant this conliegraded q is reversible.
Both have no significant effect on leather currant. Most of the grophs presented had the leah curves subtracted ow of This presented only Na of K current, either separately or together.

Effect of Ca^{+t} is to shift τ_{h} and τ_{m} voltage

$$
\begin{aligned}
& \text { (of This to shift threshold. } \\
& \text { effect on } \mathrm{Na} \text { conductance } \\
& \text { not on K conductance. }
\end{aligned}
$$

3/29/67
John
Yesterday heard tally Nicholls on Glia (leech \& necturns) glia have prominent resting potertid that behaves according to $\mathrm{Ke} / \mathrm{Ki}$ over large range.
They do not have Na Conductance change, or actionpot.
Nerve activity conses slow depolarization of glia, and this can be explained by the rise in eytracellular K_{e}, she to release by new.
Attempts to show that glia are metabolic depot My nodioantogroply did show labelled glycogen both in glia of nerve, hin did not show that glia takes it up first.
glia cere not a barrier to curer o diffuwon; the gaps between are ample.
Todoy Betel Hill of Rock. Univ. gave a vary interesting talk e separating K\&Na conductorice in Frog single node He is a subdure student preparation advises are Comely, Mauro o Dodge

Usury cottage clomp pres. of Dodge o Frankenkauser Online compnterfacility of Hart this.
Tetrodotoyin $\}$ selectively (conte graded) ot reversibly block and Sayitopin only the Na conductance, without change the on or off time constants. Sprobobly reduce under of channels available see left.

O- Bulf- Leroyes.
apil $17 \rightarrow$ Moy 1 perpeed orignal and three xesaxcopies
Copg $1 \equiv$ master nod for versionons
$\operatorname{cog} 22=$ redd ly z min
$\operatorname{cop} 3=$ leant to Tow Resese f Inita
On Moy 2 , got complete 43 references typed.
Then rommbered all seferences in the
Marter xesop \& mode other consections.
May 3 Reminhered soferences a nude corrections on the orignal
Nowhane 1 Title page
61 pages of Cout
${ }_{5}^{5}$ is drepences $62-66$
6 nt izunaleganls 62-72
15 figures
88 pages alfogether
Whey 4 Request twelve copies to he xeroxed dounstain
Plento seund 3 to Gordon (ore for cherbos Philligrs)
2 tor Master + Spare
2 for Zin \& clearance
$\frac{3}{10}$ Oor Reses, Nolson, Frank

Aprit 1967
Concentrated on completing dropt of O-Bulb popes. Gordon was here lst weale of Apmil
I hept ball solling got typung 4 xeroyning done durniz remanider of apese
\angle References renumberd May $2+3$
Also, plaminis trip to Ravello: red tope reservations et.

Also, gave Semiar at Yole on April 26.
Prof. Tallost Waternan billed my semmion as the

Quastler Memorial hecture in Theoretical Biology
 watermen ac collobordos have e.m. a phpiol evilence on diduroism (pens. to polarized lige mi crab eyes.

Qn Apprit 27 wisity Cuyttunt, Kmoy chandlar, be Hoffuan * abs Michols' colleague, Renmis Baylor whotofd me ebout heach.

May 1967
Plaming tiop trudno assangements
seceived Letter onclormesfrom Wotter Fieeman, Wey 11
Got bock 12 xerox copies of O-Bulb mamenipt Way 18
Got lettr fom Neurophysiol acepting Syvipstía Potantial paper

May 18
Sot Panam Fickets Whay 15-18
Xeroy Copies 1 to John Evans
1 for clearance
2 for Gordon

- I at home

1 for wilton \& Tom
${ }_{7} 1$ for Plil \& K.
one more for gordon 8/7/67
aldenalas \qquad

$81+2+2+2+2+2$
$81-21-2001$ at bit melles 8

Guly 17, 1967 retwnef from trip Prisa \& adut.
Henneman wated theore EPSP manncript Cecher invitation for semuor
Tod Erams for coppints
Mug wite Hellersteni
Mut il in Town with Gordou Shophenl of

MuT frepore hip report
Guly 24, 1967 Po wech, near turn maild journals Respould to Whe Kay's mivitation to Keele * Worvertonity finelly wote Ashit + Hellesstein Wentower Bob burbés memis cuipt for line I found some misunderstandury of the conseanences of uniform symptia ulyut

* Galley Proops rom Neusoplipiol.

August 67 vorked on O'Bull revisians collecting commerts, etc.
Ang. 18 saw-loger Nicoll who eeft me a mammonist. sawr Theodore Tarly girdstudent UCLA aby
wos cal. Tech. Ansengrod witt vouttanereld wos Cal. Tach. Onulengad witn vant taneweld apponaty $\mathrm{Ca}^{+t} \longleftarrow$ Doup Phivi, on inpedance stadis. added heques Was nitrueds to to now if thone more Thary.
 A urgel hin to wota for votmechange watth for volmine chasiged.

Aug 21-25 was a very hectic week
several conferences over Udo's eye, michudniz several consultations of litorature search.

Also Am Physiol. Soc. meetings of Howard.
sow Walter Freeman ot wy
received invitation from Posen for his text bode
also read Roger Nicoll's manusaipt
a "Wacgregor's "for Broplays g.
Arg 28-SyA. 1 writing up comments for Nicall q colleagues u le $"$ Bioplap 0 .
Plan for Keele Symposium (Sept.4-8) Also mus wite note to Caiamiello phone Rosen phone Cechuer
Alsotork care of contacts with Arsilival Kichary for brothers Pallotti in Bologna; hose table was merited

Tom Saith of Phil Nelson made wore comments on O^{\prime} Bulb manuscript.
(3)

Thenommank 2 Usesjh gros di hosen a
 क्रोज्यक
 allémbinat dan it
\qquad
\qquad
\qquad

 bas mand
Syp:3-8
wen to
Rede Symposionn (Prof. Wactooy)
Deyniv. O/ Keele
Staffordshire, England
Eccles t others were wy complimentary abr the dendrodendritic story:
Philips said he was glad he hod nos fallen into the trap of mbbloshng conventional internpetations of falls Jung was pleased to see dendritic slouppotentisls hack.
Later when tasked Philips, he said he feet it entirely reasonable to wonder if short ayon Golgi calls could work in the some way.
Also, the EPSP shape sting went over without challenge A later Sent Cogothai told me That his recent anatornical studies show that I-A offerents do go to motoneuron soma first, bit then chimb out with many synapses on dendrites!
Eccles was very complienentony at The Dimmer, sighing me ant as one from whose presentation he had really beamed something important. Another day, he urged me to wite up the theory in a monogropsh.

Thursday Sent. 28
Notes for talking with Jim of John Sons.
Previous boy, Ed adursed more important to get on with good work than to get involved in writing treatises.

Truth whelp of good collaborator.
Problems to discuss of assess

1. General: neural coding
both shot term + long term memory
2. General: spatial ensemble of niformation (setornumsen) (as opposed to Fine series: in tavel hostopmen)
3. Encoding \& Decoding : roles of dendrites
4. Speafic simulation atplorations with small enansuble:
(a) olfactory bulb
(v) retina
(c) Other (?cerctelhn x)
5. Polosk off older manuscripts
@ fort around sphere
(b) non-hinear mernfracce model
(c) Affect of field on neuron
(d) multiple tine constants.

Sept. ID-29 were hectic becouse of family complications with Udo at Johms oplanos woth sungery for detached retina of also an onerseas visotor ro for por of that time.
Cero, Eccles wiote sughesting Symposium: apiel Bullock phoved or NRP Work Session Jom $20-22$ Ciamiello $\left\{\begin{array}{l}\text { ses romiter for Ravello mannsuist } \\ \text { sen }\end{array}\right.$ Lsen ingritation to Rusimin Chenatio fyps

Finally wrote Cechner â Cose syf. 27
Short notes to Walter freman
Qet. 4
Bof Limustor
Donold Wlacker
Talkel to Eccles ly prone of then contocker Suphiend

Nelson
Dowhing
Qe. 9 Wos minited hy Pail tyhoudis, purdne, to present o mogor talk to Six Alrosppocescorice's Weetrig of m_{m}. tust of Coronentios + astionantis f this confuimed by Sf. Defing bethes. A dechined orill.
QJ. 12 Wrote Wackay comments on his difftreforton The beele Symposian.
Qhe nopote seferce comments for Windle
Mustrapond to Caiomiello, Rosen, Eccles, firmu O'Reltppoper
O.5. 6 - 11 woskad with many mitanptians on the AC admiltance of fhictedenhites and how this affects relations betrien ρ, Z_{m}, os elfuen ot prose shiff:, beconre he Pht Nelson veeds this for poper he is witis? with Lux.

Sdeafor a newreyperimen testing theory for paind Zm.

Ist. ast. ρ \& Z_{m} with dendrites intad Then repea obsenvations wivt derbhites cut. a use theorectical results for ait denbites.

Disars with fohn Evans \& Phil Nelson whather to do more experiments on single notonemon us motormudens to teff Theoretical ideas A discused with them. cluch bock to eartier motbook.

For dendrites Y soma Fogethr, ie. whole neuron

$$
Y_{N}=Y_{S}+Y_{D}
$$

for finite (seoledend) AC Steady Stale

$$
\begin{aligned}
Y_{N} & =(1+j \omega \varepsilon) G_{s}+G_{\infty} \sqrt{1+j \omega \tau} \tanh \left\{z_{m} \sqrt{1+1 \omega \tau}\right\} \\
& =G_{s}\left[1+j \omega \tau+\rho^{*} \sqrt{1+j \omega \tau} \tanh \left\{z_{m} \sqrt{1+j \omega \tau}\right]\right.
\end{aligned}
$$

$$
\text { where } G_{S}=\frac{G_{N}}{\rho+1} \text { and }\left\{\begin{array}{l}
\rho=\frac{G_{\infty} \tanh z_{m}}{G_{S}} \\
\rho^{*}=\frac{G_{\infty}}{G_{S}}=\frac{\rho}{\text { tanh } z_{m}}
\end{array}\right.
$$

oponoud. See 1959 xpmitp. $498 ~ \leftarrow$
Notice that for killed and.

$$
\begin{aligned}
& V=\frac{V_{0} \sinh \left[\left(x_{1}-x\right) / \lambda_{0}\right]-E \sinh \left(x / \lambda_{0}\right)}{\sinh \left(L_{0} / \lambda_{0}\right)} \\
& \frac{\partial V}{\partial x}=\left(\frac{-1}{\lambda_{0}}\right) \frac{V_{0} \cosh \left[\left(x_{1}-x\right) \lambda_{0}\right]+E \cosh \left(x / \lambda_{0}\right)}{-\frac{1}{2}\left(L_{0} / \lambda_{0}\right)} \\
& i=0 \quad \sinh z m \\
& \text { at } z=0 \text { lin woultipt te }
\end{aligned}
$$

10/16/67 Sunmarize A.C. Steady Stat Admittonce infinite Cylvider.
This sopers boch to 2/9/63 notes on yellow legal poper.
$D E \quad \frac{\partial v}{\partial z^{2}}=V+r \frac{\partial v}{\partial t}$
DCintadyotate $\quad \frac{\partial^{2} V}{\partial z^{2}}=V ; \quad V=A e^{-z}+B e^{+z}$
ACstoodyntele $\frac{\partial^{2} U}{\partial z^{2}}=(1+j \omega r) U$ where $V=U e^{j \omega t}$
B.C. forfinite largth sealdend $U=A e^{-z \sqrt{1+1 \omega^{\omega}}+B e^{+z \sqrt{1+1 \omega z}}}$
B.C. forfinito largth, $\frac{\partial V}{\partial Z}=0$ at $Z=Z \mathrm{~m}$

For epenent
see left

$$
\left\{\begin{array}{l}
\frac{2}{2 z}=0 \text { at } z=V_{0} e^{j^{\omega t}} \\
U=V_{0}
\end{array}\right\} \text { at } z=0
$$

In each cose,

$$
\begin{aligned}
& Y_{D}=\frac{I_{0}}{V_{0}}=\frac{1}{V_{0}}\left(\frac{1}{r_{i}}\right)\left(-\frac{\partial V}{\partial x}\right)_{0}=\frac{1}{V_{0}}\left(\frac{1}{\lambda r_{i}}\right)\left(-\frac{\partial V}{\partial z}\right)_{0} \\
& =\frac{G_{\infty}}{V_{0}}\left(-\frac{\partial V}{\partial z}\right)_{0} \text {, whoro } G_{\infty}=\frac{1}{\partial z i}=\frac{\Sigma \sum_{m}}{\lambda}=\lg \operatorname{lgagi}
\end{aligned}
$$

Sunnmarize result for dendsites only
$D C$ semi-mpinitt $Y_{0}=G_{\infty}$
$D C$ frictesedelert $Y_{0}=G_{\infty}$
$D C$ frictessadelest, $Y_{0}=G_{\infty}$ tanh Z_{m}
"11 openend $Y_{0}=G_{\infty}$ coth Z_{m}
AC semi-nifuicte $\quad y_{0}=G_{\infty} \sqrt{1+j \omega r}$

$$
\begin{aligned}
& \text { AC semi-mpuicle, } Y_{0}=G_{\infty} \sqrt{1+j \omega r} \\
& " \text { friitesealderdy } Y_{0}=G_{\infty} \sqrt{1+j \omega \tau} \operatorname{tarh}\left\{z_{\mu} \sqrt{1+j \omega \sigma}\right\} \\
& y_{0}=G_{\infty} \sqrt{1+j \omega \tau} \operatorname{coth}\left\{z_{m} \sqrt{1+j_{i n} \tau}\right\}
\end{aligned}
$$

Where compley quantitios must be expanded.

Fromil960poper, Let $1+j \omega r=r e^{i \theta}$
where

$$
\begin{aligned}
& r=\sqrt{1+\omega^{2} r^{2}} \\
& \tan \theta=\omega \tau \\
& \sin \theta=\omega r / r \\
& \cos \theta=1 / r
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{1+j \omega \varepsilon} & =\sqrt{2} e^{i \theta / 2} \\
& =\sqrt{2}\left\{\cos \frac{\theta}{2}+j \sin \theta / 2\right\} \\
& =\sqrt{2}\left\{\sqrt{\frac{1}{2}(1+\cos \theta)}+j \sqrt{\frac{1}{2}(1-\cos \theta)}\right. \\
& =\sqrt{12}\left\{\sqrt{\frac{1+1}{2 r}}+j \sqrt{\frac{1-1}{2}}\right. \\
& =\sqrt{(2+1) / 2}+j \sqrt{(a-1) / 2} \\
& =a
\end{aligned}
$$

$$
\begin{aligned}
1+j \omega r & =a^{2}-b^{2}+j^{2} 2 a b \\
a^{2}-b^{2} & =\frac{r+1}{2}-\frac{r-1}{2}=1 \\
2 a b & =\sqrt{r^{2}-1}=\omega r
\end{aligned}
$$

$$
\Omega=2 b^{2}+1
$$

$$
=2 a^{2}-1
$$

$$
a^{2}+b^{2}=r
$$

Quo $a=\sqrt{b^{2}+1}$

$$
b=\sqrt{a^{2}-1}
$$

for open ovid.

$$
\begin{aligned}
& Q=\frac{a \sinh 2 a z_{m}+b \sin 2 b z_{m}}{\cosh 2 a z_{m}-\cos 2 b z m} \\
& \theta=\frac{b \sinh 2 a z_{m}-a \sin 2 b z_{m}}{\cosh 2 a z_{m}-\cos 2 b z_{m}}
\end{aligned}
$$

For $\mathrm{Zm}_{m} \rightarrow \infty$, git same as at right

$$
\begin{aligned}
\text { for } z_{m} \rightarrow \infty & \quad R=\infty
\end{aligned} \quad \begin{aligned}
R & =\frac{\left(2 a^{2}+2 b^{2}\right) \epsilon}{1+\frac{(2 a \epsilon)^{2}}{}-1+\frac{(2 b \epsilon)^{2}}{2!}}=\frac{2 r \epsilon}{2 r \epsilon^{2}}=\frac{1}{\epsilon} \\
q & =\frac{b(2 a \epsilon)^{3} / 6+a(2 l \epsilon)^{3} / 6}{2 r \epsilon^{2}}=\frac{(4 a b \epsilon)\left(2 a^{2}+2 l^{2}\right) \epsilon^{2}}{6 \times 2 r \epsilon^{2}}=\frac{w r \epsilon}{3}
\end{aligned}
$$

For finite dendrite with sealecllend

$$
\begin{aligned}
V_{0} / G_{\infty} & =\sqrt{1+j \omega r} \tanh \left\{z_{m} \sqrt{1+j \omega r}\right\} \\
& =(a+j b) \tanh \left\{z_{m} a+j z_{m b}\right\} \\
& =(a+j b) \frac{\sinh 2 z_{m} a+j \sin 2 z_{m b} b}{\cosh 2 z_{m} a+\cos 2 z_{m} b}
\end{aligned}
$$

$$
\begin{array}{r}
\text { wheresthponend, get } \begin{array}{r}
(a+j b) \operatorname{coth}\left\{z_{m} a+j z_{m} b\right\} \\
=(a+j b) \frac{\sinh 2 z_{m} a-j \sin 2 z_{m} b}{\cosh 2 z_{m} a-\cos 2 z_{m} b} \\
V
\end{array} \\
R\left\{y_{0}\left(G_{\infty}\right\}=\frac{a \sinh 2 z_{m} a-b \sin 2 z_{m} b}{\cosh 2 z_{m} a+\cos 2 z_{m b}}\right. \\
\mathcal{L}\left\{y_{0}\left(G_{\infty}\right\}=\frac{b \sinh 2 z_{m a} a+a \sin 2 z_{m i n} b}{\cosh 2 z_{m} a+\cos 2 z_{m} b}\right.
\end{array}
$$

Notice that for large Z_{m} or forverylage frequency, the hyperbolic functions dominate over the criculer trig fens.

$$
\text { also sinh } \longrightarrow \cosh \text { and }\{a=\sqrt{(2+1) / 2}
$$

sin agreement with older semelt for semi- unfit long th.
Zn $=\epsilon$
Tor very small arguments,

$$
\begin{aligned}
& R=\frac{2 a^{2} \epsilon-2 b^{2} \epsilon}{2}=\epsilon\left(a^{2}-b^{2}\right)=\epsilon \\
& g=\frac{4 a b \epsilon}{2}=\epsilon(2 a b)=\epsilon \omega t
\end{aligned}
$$

$$
\begin{aligned}
& \left.\alpha=2 a z_{m}\right)=2 z_{m} \sqrt{b^{2}+1}=2 z_{m} \sqrt{\frac{\beta^{2}}{4 z_{m}^{2}}+1}=\sqrt{\beta^{2}+4 z_{m}^{2}} ; b=\frac{\beta}{2 z_{m}} \\
& \beta=2 z_{m b} b=2 z_{m} \sqrt{a^{2}-1}=2 z_{m} \sqrt{\frac{\alpha^{2}}{4 z_{m}^{2}}-1}=\sqrt{\alpha^{2}-4 z_{m}^{2}} ; \quad a=\frac{\alpha}{2 z_{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{2}=1.57 \quad 11 \\
& \left.\begin{array}{l}
\sqrt{2.46+4}=2.54=(r-.60) \\
\sqrt{9.87+4}=3.72=(\pi+.58)
\end{array}\right\} \\
& z_{m}=\frac{1}{2} m^{-2} \beta \alpha=\sqrt{2.46+1}=1.86 \\
& z_{m}=1, \alpha=\sqrt{9.87+4}=3.72
\end{aligned}
$$

Toroper oud

$$
R^{2}+\gamma^{2}=\left(a^{2}+b^{2}\right)\left(\frac{\cosh \alpha+\cos \beta}{\cosh \alpha-\cos \beta}\right)
$$

for β min 2 undor zod Quodran, quotuent is less than muty $\operatorname{fog} \beta<\frac{\pi}{2}$, quotion is geater thon mity $\operatorname{for} \beta=\frac{\pi}{2}$, quotion $=1$
Hare, for $\beta=\frac{\pi}{2}, R=\frac{a \sinh \alpha+b}{\cosh \alpha}, \alpha=\frac{b \sinh \alpha-a}{\cosh \alpha}$ $=\operatorname{atanh} \alpha+\frac{b}{\alpha} \sqrt{ }=b \tan \alpha-\frac{a}{\cosh \alpha}<b$
implies $>a$

$$
\begin{aligned}
&\left.\operatorname{for} \beta=\pi, \quad \begin{array}{rl}
R & =\frac{a \sinh \alpha}{\cosh \alpha+1}, \quad \alpha
\end{array}\right)=\frac{\operatorname{b\operatorname {sinh}\alpha }}{\cosh \alpha+1} \\
&=a \sqrt{\frac{\cosh \alpha-1}{\cosh \alpha+1}}<a, \quad
\end{aligned}
$$

thine cosewas examined first \& shoved that for certainivahea of the argument $2 b z_{m}$, can got admittance loses than for infuictolougth. © examine this question.

$$
\text { sealed and } \begin{array}{rlr}
\alpha^{2}+2^{2} & =\frac{\left(a^{2}+b^{2}\right)\left(\sinh ^{2} \alpha+\sin ^{2} \beta\right)}{\left(\cosh ^{2} \alpha+\cos \beta\right)^{2}} \quad \begin{array}{l}
\text { where } \alpha=2 a z m) \\
\left.\beta=2 b-z_{m}\right)
\end{array} \\
& =\left(a^{2}+b^{2}\right)\left(\frac{\left.\cosh ^{2} \alpha-1+1-\cos ^{2} \beta\right)}{\left.(\cosh \alpha+\cos \beta)^{2}\right)}\right. \\
& =\left(a^{2}+b^{2}\right)\left(\frac{\cosh \alpha-\cos \beta}{\cosh \alpha+\cos \beta) \quad \text { which } \longrightarrow 0} \text { as } z_{m} 00\right.
\end{array}
$$

For $z_{m}=\infty$, get simply, $a^{2}+b^{2}$
for β in 2ndorsodquodrant, quotient is greater than unity for $\beta<\frac{\pi}{2}$, quoting is less than unity.

$$
\begin{aligned}
f o r ~ & \beta=2 b \cdot 7_{m}=\pi \text {, } \cos \beta=-1 \text { and get }\left(a^{2}+b^{2}\right)\left(\frac{\cosh \alpha+1}{\cosh \alpha-1}\right) \\
\alpha & =\frac{a}{b-\pi}
\end{aligned}
$$

$$
\text { To understand nituitively } R=a \operatorname{a\operatorname {tanh}\alpha -\frac {b}{\operatorname {cosh}\alpha }} \quad a-b=b \tanh \alpha+\frac{a}{\cosh \alpha},<a=b
$$

$$
\text { mberstand intuitively } R=\frac{a \sinh \alpha-b}{\cosh \alpha}<a, \alpha=\frac{b \sinh \alpha+a}{\cosh \alpha}>b
$$

$$
\text { when } \beta=\pi, \quad Q=\frac{a \sinh \alpha}{\cosh \alpha-1}, \quad \alpha=\frac{b-\sinh \alpha}{\cosh \alpha-1}
$$

$$
=a \sqrt{\frac{\cosh h+1}{\cosh -1}>a} \quad=b \sqrt{\frac{\cosh +1}{\cosh -1}}>b
$$

$$
\text { When } \begin{aligned}
\beta & =\frac{\pi}{4}, \quad R=\frac{a \sinh \alpha-.707 b}{\cosh \alpha+.707}<a ; \quad \alpha=\frac{b \sinh \alpha+.707 a}{\cosh \alpha+.707} \\
& =.785 \\
b & =\frac{.785}{2 z_{m}} \\
\alpha & =\sqrt{.616+4 z_{m}^{2}} \\
a & =\frac{\alpha}{2 z_{m}}=\sqrt{b^{2}+1}
\end{aligned}
$$

11/15/67
Recured lettr from Eccles asking me to firm up Symposion thove teleptoned Shepkend

Dawhy
Rese
Nblson
Bennett
to firm up et es
They are to seturn calls $11 / 16 / 67$
Now simple title saggented ly Ecelesín New Depelopenents in Vortetrote Synaptology
$11 / 15 / 67$
There are more loose notes selated to The previous pages. Rapinit nuputs pousmig in for EASP pppers Last two wepks were devoted to many suall projects
(1) Mannosript for Ciamiello (Nor.2)
(2) Reperseepob for Brookhart
(3) Jetter t Eales
(4) Several conversations with Goth Evaus explosing rosearch ideas
Need fersh notes on turn ; alvo seep. 173

(5) Ed arked me to adhien NIAMX Comseloses on Nor. 17, allownig 50minter (40+10) nunt Revien notes This aftormoon
Plento soon Order Nyacal. Repsints write J. Z. Young who wrote aher amacrive phone Rosen (rechapter) write olowithy (botfale) thindown Gobowo (Duke) \int soppiñ arouge to go our offactory glomerular fine structure with Rese A Evans write St.agothai sixuppeson den hites ?unte vellastemi, fresuman
Phil Nelson? re his manmenpt.
$5 / 11 / 67$
Received letters Woylo
K. S. Cole
alto mixed feelings
Thinks that Macey is sounder
Thins that Manual probably has lowdown
goldman going to Philadelphia (New Med. School)
Story about Claire Booth Ince (recent convert)
Osterhont said one could alwayphe looknig for a job bob Frouk used every such opportunity to visit
a place \& get to know who was donn what.
(Fried to get freggany to cover him during Sobbotical bu coned offer very little
Is aid beta gruabivare; K.C. sand Le tatho that way too.

Ore can always soy that one bikes present sititiation very well, but that one is witting to be shomm that other isletter.

Thurs. Syp 28
mul tolk with Jim \& with Johm Evons
Edsugert monemphpotant to aploit lead then to write treafises. get but collelenctor.
Problims:

1. Gexeral: nemal coding
both short loug tom
2. Generali spatial usemble ofij) formation
(spatio-tempporal)
3. Encoding o Decoding
4. Specifir sinulation applerations witp
small envarible.
(a) olactory bueb
(b) retina cerebellm x
(d) other
5. Polish off older manuscripts
(a) field droul spmere
(b) nou- iniou syptern
(c) Afsio field on newon
(d) mulxple tine constanto

Equalizuog Tims Constants an-f
Electiatomi terzth of Nesuce
Cghviders and a/Neusons

Equaluzy Timen Constunts axd Neme Length:

Tor anou red.
Suppore liscol br of une only $b_{E}+G_{j}$
at rest, suppore $G_{E}=0.1 G_{j}$
Contral, with $G_{c}+G_{i}$ contow, loch at rexpone to curnen step.toul'-
Noat, hare G_{e} pelow varisble which goons os V^{2}

$$
10 / 5 / 66
$$

Book9 Hyperpol series

7or 17% luppespol in (1), this last gave 17% odegenicrase, 10.9% opeckincrease Refer to pp. 84 t nearly. p. 83 weshted mean fortor -
p87 hyperpol electrotonua, p.88 forasessment

$$
\begin{array}{cccccc}
\text { p. } 92 & 615.835 & \varepsilon=. \text { iniollfore } & \tau / 25 & .20 & \text { slope } 16 \% \text { peck } 14.6 \% \\
91 & 615.836 & 1,-2,-3,4,15 & 11 & .40 & 14 \% \\
10.7 \%
\end{array}
$$

Chavage to 20% hyperpol कr/50

10/5/66 Change to 40% hyperpol of $r / 25$
Try $.840 \quad \varepsilon=1 \mathrm{mi}$ (1), $4.6 \mathrm{~min}(4) \tau / 25$
.841 , lanallfire r/25
$.842 \quad 1,12,03, \cdot 4, .5 \quad \tau / 25$
.980 in (10) witu $\lambda_{12}=6.25$ Tmane go to 3.2 c/50
.981
.982

He would like to recuive anmouncemerts of $\frac{p_{1}^{909}}{\text { Ba }^{9}}$ our Semmiars
Martin a Garstens
Office of Naval Research
Cooe 42. Parsics Brancat

$$
\begin{aligned}
& \text { WasH.D.C. } 20360 \\
& 0 x-6-1890^{203}
\end{aligned}
$$

He is a plypicizt who is interested in supportug birmpies \& Giomathematics

Ruous Geoze Weiss
$10 / 6 / 66 \rightarrow$ talhed to Zelen, whosuit hin to see us, t learn akow our group. Hehes atterded sone of F. O. Schnitt's coppences q has talked with heirnigston

Dr. Gumes garary
Code
213

$$
5 x-5-5971
$$

1sthulturede Dec
$6+7$

$$
6+7
$$

$$
1 / 25 / 67
$$

Niledi commented that their method of replarno Ca with My could be
\rightarrow used to test if and is required to mediate Tenno -
". is required to mediate Theldendro dendritic pot huvof.
They use this at the nim jour to provers ACh release ky an action potential.

Gemule as bey to leerming proodes (A) prespraptic specoficity
(B) post symaptic limk to succen offing (? neword) genini les have loto of osides

3/29/68
Delinered O' Bull manseript.
Wsote notes to
Anidle
Pudomin
Goldstern (Student a lliniago) (Doooth hasit typedyd) ?
Lionositon
Bullock

Dechatiox of carly gomary 68
slowed down by flu did some referee work also wrote I.Z. Young

Scheikels
Jobsis \& Moore
Work on field of news on also wrote vigo \& checked owl tope secadens

Ston Appel 3/10/64 p.90 Book 3
ahro see p. 91 for Fifltugh's reaction tony active membene model

Sue p. 92 Von Busen secords 4 quertions he foced

Toke Potentis poper chests to the aust clpastmens. Also, photogryich $5 \oplus$ plot
dis on flochotes
shetore 7 diagrone fogmes 4 may कित.

Nalson o Van Buren
$1 / 5 / 65$ rof $p .2$ of sook 6
Seeorop.77 of Bork 5
pp 25-31

$$
\begin{gathered}
\text { pp } 40-41 \\
44-49 \\
\text { p. } 83
\end{gathered}
$$

Xerox copy sent
Mono to Bob Burke and Phil Nelson
$1 / 31 / 67$ from Wii Rall
Re: RN, P, andsufface area of rescaled neuron models.

For simplicity, consider N dendritic trees, each represented by an equivalent cylnider of lough, L, and diameter, d. The total dendritic surface area (neglecting ends of equiv. cylinder) can be expressed

$$
A_{\infty}=N L \pi d .
$$

Tor simplicity, consider a spherical soma of radius, a. The soma surface area con be cypresed

$$
A_{s}=4 \pi a^{2}
$$

The dendritic to soma surface area ratio is thus

$$
A_{*} / A_{s}=\frac{N L d}{4 a^{2}}
$$

This remanis constant with rescaling, provided That $N h d \boldsymbol{C H}+a^{2}$. The simplest case world bee, N constant, and $L \propto d \propto a$. Hemener, more complicated cases are also possible!
(2)

The combined dendritic nipnt conductance con be expressed

$$
G_{D}=N G_{\infty} \tanh (L / \lambda)
$$

where, for each equivalent cylmider

$$
\begin{aligned}
& \lambda=\frac{1}{2} \sqrt{R_{m} d / R_{i}} \propto \sqrt{d} \text { for RmandRiconst. } \\
& \text { and } \begin{aligned}
G_{\infty} & =\frac{1}{\lambda r_{i}}=\frac{\lambda}{r_{m}}=\frac{\lambda \pi d}{R_{m}} \\
& =\frac{(\pi / 2)}{\sqrt{R_{m} R_{i}}} d^{3 / 2} \propto d^{3 / 2} \text { for RmandRicousto } \\
& =\frac{C d^{3 / 2}}{\sqrt{R_{m}}} \text { where } C=\frac{\pi / 2}{\sqrt{R_{i}}}
\end{aligned} \text {. }
\end{aligned}
$$

Special cases: for $L / \lambda>2.3$, $\tanh (L / \lambda)$ differs from unity by les then 2%

$$
\text { Then } G_{D} \approx \frac{N \lambda}{r_{m}}=\frac{N C d^{3 / 2}}{V R_{m}}
$$

B. for $L / \lambda<0.25$, tanh (L / λ) differs poon $4 / \lambda$ by less than 2%
Then $G_{D} \simeq \frac{N L}{R_{\text {m }}}=\frac{N L \pi d}{R_{m}}=\frac{A_{d}}{R_{m}}$

Inotherworls, for very short equivalent cyhriders,

$$
G_{D}=\frac{A_{D}}{R_{m}}
$$

But, for very long cylinders

$$
G_{D}=\left(\frac{\lambda}{L}\right)\left(\frac{A_{D}}{R_{m}}\right)
$$

and, ingeneral, for all lengths,

$$
G_{D}=\left(\frac{A_{D}}{R_{m}}\right)\left(\frac{\lambda}{L}\right) \tanh (L / \lambda)
$$

This is a new expression that wan not in my 1959 paper. The soma conductance is

$$
G_{s}=\frac{A_{s}}{R_{m}}
$$

The whole neuron conductance

$$
\begin{array}{r}
G_{N}=\frac{1}{R_{N}}=G_{S}+G_{D}=\frac{A_{S}+A_{D}\left(\frac{\lambda}{L}\right) \tanh (L / \lambda)}{\operatorname{Ram}} \\
R_{N}=\frac{R_{m}}{A_{S}+A_{D}(\lambda) \tanh (L / \lambda)}=\frac{R_{m m}}{(\rho+1) A_{S}} \\
R_{\text {mimiporm }}
\end{array}
$$

These new expressions provide the relations between ρ, R_{N} and R_{m}, and areas that we need.

Now we con consider several kinds of rescaling.
I keep ρ constanl, and Rm constant if also $\left(A_{D} / A_{S}\right)$ is constant then L / λ must be constant $\alpha L / \sqrt{d}$ audalso NGC $=4 a^{2}$
\therefore If The number of dendritic trees remains constant, it is news any that

$$
L^{3} \alpha d^{3 / 2} \alpha a^{2}
$$

or that $L \propto a^{2 / 3} \propto A_{s}^{1 / 3}$
and $d \propto a^{4 / 3} \propto A_{s}^{2 / 3}$
For such scaling, $R_{N} \propto \frac{R_{m}}{A_{s}}$
(5)

However, othes kinds of scaling
could al so be considered.
II Letpvary
Suppese, for example, that $L \propto d \propto a$, preserving AD/As, bie notp.
Then

$$
L / \lambda \propto L / \sqrt{d} \propto \frac{a}{\sqrt{a}} \propto \sqrt{a}
$$

This neaus that doublngin thineer dimensoomen of The cell would nicrease $4 / x$ by $\sqrt{2}=1.414$ and he supfere ara wourd micieas forstold. From an initial volue of $L / x=1.0$

$$
\begin{aligned}
\frac{p_{2}}{p_{1}} & =\frac{(1.414)^{-i}}{1} \frac{\tanh (1.414)}{\operatorname{tandn}(1)} \\
& \approx(0.707)\left(\frac{.889}{.762}\right) \\
& \approx \frac{.628}{.762}=0.824
\end{aligned}
$$

(6)

Notice that because $R_{N}=\frac{R_{m}}{A_{s}(\rho+1)}$
If R_{m} is kept coustons and linear dimensions are doubled

$$
\begin{aligned}
& \frac{R_{N_{2}}}{R_{N_{1}}}=\frac{1\left(1+\rho_{1}\right)}{4\left(1+0.824 \rho_{1}\right)} \\
& \text { If } \rho_{1}=5 \text {, then get } \frac{6}{4(1+4.12)}=\frac{6}{20.5} \\
& \qquad=\frac{1}{3.4}
\end{aligned}
$$

ire. Whole neuron resistance is decreased \ln a smaller foctor (3.4) than
novel hove been the coze (4.0) would hove been the case (4.0) Case I.
To pin this anotur way: for cose II, with $L \alpha d \alpha a$, reducuiz R_{N} by a foetor of 4 me eons nicreasuy The surface area by more than a factor of 4 .

There are many other cases.
(A) Suppose the member of dendritic thees, N, varied with neuron size.
(B) Suppose R_{m} varied with nemonsize.
(c) Suppose A_{D} / A_{s} were not preserved.
(d) Suppose the relation of L to a were different from cases I or II.

